Please wait a minute...
 
最新公告: 重要提醒:骗子冒充编辑部要求加作者微信,谨防上当!   关于暑假、寒假期间版面费发票及期刊样刊延迟邮寄的通知    
现代化工  2021, Vol. 41 Issue (S1): 241-248,255    DOI: 10.16606/j.cnki.issn0253-4320.2021.S.049
  科研与开发 本期目录 | 过刊浏览 | 高级检索 |
氧化锡/磁性纳米洋葱碳复合材料光催化降解罗丹明B的研究
师倩莹, 张静, 郭雨菲, 龚浩, 张卫珂
太原理工大学环境科学与工程学院, 山西 太原 030024
Photocatalytic degradation of rhodamine B by SnO2/magnetic carbon nano-onions composite
SHI Qian-ying, ZHANG Jing, GUO Yu-fei, GONG Hao, ZHANG Wei-ke
College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
下载:  PDF (4240KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 为改善氧化锡(SnO2)的光催化性能,扩大其在印染废水处理领域中的应用,采用简单的水热合成法制备了新型磁性可回收氧化锡/磁性纳米洋葱碳(SnO2/MCNOs)复合材料。采用SEM、XRD、XPS、UV-Vis DRS和FT-IR等分析手段对复合材料进行了研究,并用磁滞回线确定了所制备复合材料的顺磁性。选择10 mg/L的罗丹明B(RhB)作为典型的有机污染物来评价上述制备的复合材料的光降解效率。结果表明,SnO2/MCNOs比纯SnO2具有更好的光催化活性。最后,根据物理化学和光催化性能,提出了所制备复合材料对RhB的降解机理。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
师倩莹
张静
郭雨菲
龚浩
张卫珂
关键词:  氧化锡  磁性纳米洋葱碳  光催化  降解  罗丹明B    
Abstract: A novel magnetically retrievable SnO2/magnetic carbon nano-onions (SnO2/MCNOs) composite is synthesized via a simple hydrothermal method, aiming to improve the photocatalytic performance of SnO2 and expand its application in the field of printing and dyeing wastewater treatment.The characteristics of the as-prepared materials are explored by scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), ultraviolet visible light diffuse reflection (UV-vis DRS) and Fourier transform infrared spectroscopy (FT-IR) techniques, and the paramagnetic nature is determined by hysteresis loops measurements.Rhodamine B with a concentration of 10 mg·L-1 is chosen as typical organic pollutant to evaluate the photodegradation efficiency of the as-prepared composite.The results indicate that SnO2/MCNOs have a superior performance on photocatalytic activity than pure SnO2.A possible mechanism for the materials to degrade rhodamine B is proposed based on the physic-chemical and photocatalytic properties.
Key words:  SnO2    magnetic carbon nano-onions    photocatalytic    degradation    rhodamine B
收稿日期:  2021-03-16      修回日期:  2021-05-27           出版日期:  2021-10-30
ZTFLH:  TQ13  
通讯作者:  张卫珂(1981-),男,博士,副教授,研究方向为纳米材料与纳米结构对环境污染物的检测与治理,通讯联系人,zhangweike@tyut.edu.cn。    E-mail:  zhangweike@tyut.edu.cn
作者简介:  师倩莹(1996-),女,硕士生,研究方向为光催化材料,756711713@qq.com
引用本文:    
师倩莹, 张静, 郭雨菲, 龚浩, 张卫珂. 氧化锡/磁性纳米洋葱碳复合材料光催化降解罗丹明B的研究[J]. 现代化工, 2021, 41(S1): 241-248,255.
SHI Qian-ying, ZHANG Jing, GUO Yu-fei, GONG Hao, ZHANG Wei-ke. Photocatalytic degradation of rhodamine B by SnO2/magnetic carbon nano-onions composite. Modern Chemical Industry, 2021, 41(S1): 241-248,255.
链接本文:  
https://www.xdhg.com.cn/CN/10.16606/j.cnki.issn0253-4320.2021.S.049  或          https://www.xdhg.com.cn/CN/Y2021/V41/IS1/241
[1] 张珈琪.环保在我身边[J].环境教育,2017,(Z1):68.
[2] Wang R,Jin X,Wang Z,et al.A multilevel reuse system with source separation process for printing and dyeing wastewater treatment:A case study[J].Bioresource Technology,2017,247:1233-1241.
[3] 卢莱雅,秦嘉玲,杨圩.关于印染废水处理方法的综述[J].山东化工,2020,385(15):75-76.
[4] Asghar A,Raman A A,Daud W.Advanced oxidation processes for in-situ production of hydrogen peroxide/hydroxyl radical for textile wastewater treatment:A review[J].Journal of Cleaner Production,2015,87:826-838.
[5] Turhan K,Durukan I,Ozturkcan S A,et al.Decolorization of textile basic dye in aqueous solution by ozone[J].Dyes and Pigments,2012,92(3):897-901.
[6] Ozturk E,Karaboyaci M,Yetis U,et al.Evaluation of integrated pollution prevention control in a textile fiber production and dyeing mill[J].Journal of Cleaner Production,2015,88(1):116-124.
[7] Han Z A,Yi B,Yue W A,et al.Construction of BiVO4 microspheres sensitized TiO2 NTAs for the enhanced photocatalytic mineralization of organic dyes[J].Ceramics International,2020,46(9):13433-13441.
[8] Reinhard L M.Perfluorochemicals in water reuse[J].Chemosphere,2008,72(10):1541-1547.
[9] Thiam A,Sires I,Brillas E.Treatment of a mixture of food color additives(E122,E124 and E129) in different water matrices by UVA and solar photoelectro-Fenton[J].Water Research,2015,81:178-187.
[10] Yang Y,Jin H,Zhang C,et al.Nitrogen-deficient modified P-Cl co-doped graphitic carbon nitride with enhanced photocatalytic performance[J].Journal of Alloys and Compounds,2019,821:153439.
[11] Bhattacharjee A,Ahmaruzzaman M.Photocatalytic-degradation and reduction of organic compounds using SnO2 quantum dots (via a green route) under direct sunlight[J].Rsc Advances,2015,5(81):66122-66133.
[12] Guan M,Zhao X,Duan L,et al.Controlled synthesis of SnO2 nanostructures with different morphologies and the influence on photocatalysis properties[J].Journal of Applied Physics,2013,114(11):114303.
[13] Jiang H,Wang R,Wang D,et al.SnO2/diatomite composite prepared by solvothermal reaction for low-cost photocatalysts[J].Catalysts,2019,9(12):1060.
[14] Ai-Hamdi A M,Rinner U,Sillanpää M,et al.Tin dioxide as a photocatalyst for water treatment:A review[J].Transactions of the Institution of Chemical Engineers,2017,107:190-205.
[15] Chen D,Huang S,Huang R,et al.Highlights on advances in SnO2 quantum dots:Insights into synthesis strategies,modifications and applications[J].Materials Research Letters,2018,6(9):462-488.
[16] Shyamala R,Gomathi D L.Reduced graphene oxide/SnO2 nanocomposites for the photocatalytic degradation of rhodamine B:Preparation,characterization,photosensitization,vectorial charge transfer mechanism and identification of reaction intermediates[J].Chemical Physics Letters,2020,748:137385.
[17] Tajima T,Goto H,Nishi M,et al.A facile synthesis of a SnO2/graphene oxide nano-nano composite and its photoreactivity[J].Materials Chemistry and Physics,2018,212:149-154.
[18] Seema H,Kemp K C,Chandra V,et al.Graphene-SnO2 composites for highly efficient photocatalytic degradation of methylene blue under sunlight[J].Nanotechnology,2012,23(35):355705.
[19] 马晓春,徐广飞,胡建成.SnO2/Fe3O4磁性光催化微纳米材料的制备与性能研究[J].材料导报,2012,26(20):78-80.
[20] Li J,Xiao Q,Li L,et al.Novel ternary composites:Preparation,performance and application of ZnFe2O4/TiO2/polyaniline[J].Applied Surface Science,2015,331:108-114.
[21] Zhou L,Enakonda L R,Harb M,et al.Fe catalysts for methane decomposition to produce hydrogen and carbon nano materials[J].Applied Catalysis B:Environmental,2017,208:44-59.
[22] Panich A M,Osipov V Y,Takai K.Diamagnetism of carbon onions probed by NMR of adsorbed water[J].Carbon,2015,29(5):392-397.
[23] Zhang W,Wang J,Yang Y,et al.Novel magnetically retrievable Bi2WO6/magnetic carbon nano-onions composite with enhanced photoactivity under visible light[J].Journal of Colloid and Interface Science,2018,531:502-512.
[24] Zhang Y,Zhang W,Yang K,et al.Carbon nano-onions (CNOs)/TiO2 composite preparation and its photocatalytic performance under visible light Irradiation[J].Journal of Environmental Engineering,2020,146(4):04020009.
[25] Goclon J.Manipulation of structural and electronic properties of B-doped carbon nano-onions based on DFT modelling[J].Applied Surface Science,2020,532:147267.
[26] Ugarte D.Curling and closure of graphitic networks under electron-beam irradiation[J].Nature,1992,359(6397):707-709.
[27] Wei Z,Zhou Q,Wang J,et al.Hydrothermal synthesis of SnO2 nanoneedle-anchored NiO microsphere and its gas sensing performances[J].Nanomaterials,2019,9(7):1015.
[28] Park M.The effect of morphological modification on the electrochemical properties of SnO2 nanomaterials[J].Advanced Functional Materials,2007,18(3):455-461.
[29] Wang Z.Low temperature processed complementary metal oxide semiconductor (CMOS) device by oxidation effect from capping layer[J].Scientific Reports,2015,5(1):9617.
[30] Yu P,Liu M,Gong H,et al.L-leucine templated biomimetic assembly of SnO2 nanoparticles and their lithium storage properties[J].Scanning,2018,2018:1-8.
[31] Das S,Kim D Y,Choi C M,et al.Structural evolution of SnO2 nanostructure from core-shell faceted pyramids to nanorods and its gas-sensing properties[J].Journal of Crystal Growth,2011,314(1):171-179.
[32] Chen H T,Pu X M,Gu M,et al.Tailored synthesis of SnO2@graphene nanocomposites with enhanced photocatalytic response[J].Ceramics International,2016,42(15):17717-17722.
[33] Hung M C,Yuan S Y,Hung C C,et al.Effectiveness of ZnO/carbon-based material as a catalyst for photodegradation of acrolein[J].Carbon,2014,66:93-104.
[34] Tang Y B,Lee C S,Xu J,et al.Incorporation of graphenes in nanostructured TiO2 films via molecular grafting for dye-sensitized solar cell application[J].ACS Nano,2010,4(6):3482-3488.
[35] Mehran E,Shayesteh S F,Nasehnia F.Investigation of structural and magnetic effects of cobalt doping in ZnFe2O4 nanoparticles[J].Journal of Superconductivity & Novel Magnetism,2016,29(5):1241-1247.
[36] Ren M,Sun Y,Xing H,et al.Magnetically separable Fe3O4@C/BiOBr heterojunction for the enhanced visible light-driven photocatalytic performance[J].J Nanopart Res,2018,20(10):268.
[37] Chen R,Wang H,Wu H,et al.SrTiO3/BiOI heterostructure:Interfacial charge separation,enhanced photocatalytic activity,and reaction mechanism[J].Chinese Journal of Catalysis,2020,41(4):710-718.
[38] Zhang G,Lin B,Qiu Y,et al.Highly efficient visible-light-driven photocatalytic hydrogen generation by immobilizing CdSe nanocrystals on ZnCr-layered double hydroxide nanosheets[J].International Journal of Hydrogen Energy,2015,40(14):4758-4765.
[39] Adán C,Carbajo J,Bahamonde A,et al.Phenol photodegradation with oxygen and hydrogen peroxide over TiO2 and Fe-doped TiO2[J].Catalysis Today,2009,143(3-4):247-252.
[40] Wu K,Gunaratne A,Gan R,et al.Relationships between cooking properties and physicochemical properties in brown and white rice[J].Starch-Starke,2017,70(5-6):1700167.
[41] Lan Z A,Zhang G G,Wang X C.A facile synthesis of Br-modified g-C3N4 semiconductors for photoredox water splitting[J].Applied Catalysis B Environmental,2016,192:116-125.
[42] Feng G,Shu F W,Song C F,et al.Synthesis and luminescence properties of SnO2 nanoparticles[J].Chemical Physics Letters,2003,372(3-4):451-454.
[43] Lei P,Chen C,Yang J,et al.Degradation of dye pollutants by immobilized polyoxometalate with H2O2 under visible-light irradiation[J].Environmental Science & Technology,2005,39(21):8466-8474.
[44] Guan Q,Khan S,Wang Z,et al.The preparation,characterization of TiO2-x/Ag3PO4 heterojunctions with enhanced photocatalytic visible-light performance[J].Journal of Alloys and Compounds,2020,852:156947.
[1] 丁彤彤, 孙秀花, 高昌录. 自抛光防污涂料的研究进展[J]. 现代化工, 2021, 41(S1): 58-61,66.
[2] Umair Muhammad, 左轶, 李克艳, 郭新闻. Au/rGO/BiVO4光催化降解有机污染物[J]. 现代化工, 2021, 41(S1): 120-125.
[3] 黄强, 郭贵宝. 炭吸附纳米铁酸铋粉体的制备及其光催化性能研究[J]. 现代化工, 2021, 41(S1): 126-128,133.
[4] 李心, 郭琳, 黄金的, 王丽, 谢海泉, 叶立群. PVDF/BiOBr复合光催化剂的制备及超声强化降解RhB[J]. 现代化工, 2021, 41(S1): 143-149.
[5] 刘钰馨, 梁泽升, 廖梁燕, 梁家能. 4种不同表面性质纳米SiO2改性热塑性木薯淀粉的性能研究[J]. 现代化工, 2021, 41(S1): 179-182.
[6] 王振远, 李向阳, 李克艳, 郭新闻. Fe-Bi2WO6/TiO2异质结的构建及其光芬顿反应性能研究[J]. 现代化工, 2021, 41(S1): 183-188.
[7] 李大玉, 周逸文, 梅昕, 张超. 光催化涂层/薄膜材料的制备工艺及其结构调控研究进展[J]. 现代化工, 2021, 41(9): 38-42.
[8] 张宇, 毛磊, 张春桃, 梁文懂. 原位合成Cu-Fe3O4@花生壳炭及其非均相Fenton催化降解罗丹明B的研究[J]. 现代化工, 2021, 41(9): 86-91.
[9] 杨晓艳, 张金源, 李惠娟, 李榕, 杨东海, 梁坤. 酚醛树脂改性磁载TiO2复合材料的制备及太阳光催化性能的研究[J]. 现代化工, 2021, 41(9): 118-122,128.
[10] 李靖, 王瑜, 余艳, 邱超, 吴光亮, 陈艳, 杨华美. AlgCa/TiO2凝珠吸附-紫外光催化协同去除水中Cr(Ⅵ)的研究[J]. 现代化工, 2021, 41(8): 128-132,138.
[11] 张洪雨, 董静贤, 吴雪芹, 徐红, 钟毅, 毛志平, 张琳萍. PVP改性BiOI光催化降解抗生素的研究[J]. 现代化工, 2021, 41(8): 173-176,181.
[12] 冯兰惠, 包木太, 杨玉双, 胡鑫. BiO2-x/Bi2WO6的制备及其超声辅助光催化降解四环素的研究[J]. 现代化工, 2021, 41(8): 182-186,192.
[13] 张双双, 田跃儒. g-C3N4负载磷钨酸及其光催化固氮性能的研究[J]. 现代化工, 2021, 41(8): 203-207.
[14] 鲁麒, 魏香婷, 姚菁华, 肖雷. 微生物共培养降解多环芳烃研究进展[J]. 现代化工, 2021, 41(6): 46-50,54.
[15] 金英伟, 彭蕾, 李平灯, 杨玉莹, 程波, 郑琦, 户业丽, 丁强. Fe3O4纳米粉体掺杂PTCDI复合材料的制备与光催化研究[J]. 现代化工, 2021, 41(6): 106-109.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备09035943号-37
版权所有 © 《现代化工》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn