Please wait a minute...
 
最新公告: 重要提醒:骗子冒充编辑部要求加作者微信,谨防上当!   关于暑假、寒假期间版面费发票及期刊样刊延迟邮寄的通知    
现代化工  2021, Vol. 41 Issue (S1): 120-125    DOI: 10.16606/j.cnki.issn0253-4320.2021.S.024
  科研与开发 本期目录 | 过刊浏览 | 高级检索 |
Au/rGO/BiVO4光催化降解有机污染物
Umair Muhammad, 左轶, 李克艳, 郭新闻
大连理工大学化工学院, 精细化工国家重点实验室, 辽宁 大连 116024
Gold/reduced graphene oxide/bismuth vanadate for photocatalytic degradation of organic contaminants
UMAIR Muhammad, ZUO Yi, LI Ke-yan, GUO Xin-wen
State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
下载:  PDF (5817KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 通过在BiVO4上连续负载还原氧化石墨烯(rGO)和Au,成功合成出Au/rGO/BiVO4三元复合材料。采用多种表征手段对材料的理化性质展开系统研究。结果表明,BiVO4为十边形单斜晶系,rGO负载在BiVO4外部,Au颗粒镶嵌在rGO上形成异质结。研究了Au/rGO/BiVO4对亚甲基蓝和四环素的光降解作用。rGO的存在促进了电子转移,而Au则促进了可见光的吸收,提高了光催化活性。因此,Au/rGO/BiVO4在可见光照射下表现出比rGO/BiVO4和BiVO4更强的光降解性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
Umair Muhammad
左轶
李克艳
郭新闻
关键词:  BiVO4  光催化  亚甲基蓝  四环素  降解    
Abstract: Au/rGO/BiVO4, a ternary composite, is successfully synthesized by supporting the reduced graphene oxide (rGO) and gold on BiVO4 in succession.The composite is characterized by various techniques to study its structure.Results show that BiVO4 shows a decagonal-shaped monoclinic system, rGO is loaded on the outer of BiVO4.Gold particles decorate onto rGO to form a heterojunction.The photodegradation of as-synthesized Au/rGO/BiVO4 to methylene blue and tetracycline is studied.The existence of rGO promotes electron transfer, while gold facilitates the absorption of visible light to improve the photocatalytic activity.Therefore, Au/rGO/BiVO4 shows a greater photodegradation performance than both rGO/BiVO4 and BiVO4 under the irradiation of visible light.
Key words:  bismuth vanadate    photocatalysis    methylene blue    tetracycline    degradation
收稿日期:  2021-04-09      修回日期:  2021-06-06           出版日期:  2021-10-30
ZTFLH:  TQ426  
基金资助: 国家重点研发计划(2016YFB0301704);国家自然科学基金(21506021);中央高校基本科研业务费项目(DUT19LK61)
通讯作者:  郭新闻(1967-),男,博士,教授,博士生导师,研究方向为环境友好催化,通讯联系人,guoxw@dlut.edu.cn。    E-mail:  guoxw@dlut.edu.cn
作者简介:  Umair Muhammad(1998-),男,硕士生,研究方向为BiVO4基材料的合成及光催化降解,muhammadumair@mail.dlut.edu.cn
引用本文:    
Umair Muhammad, 左轶, 李克艳, 郭新闻. Au/rGO/BiVO4光催化降解有机污染物[J]. 现代化工, 2021, 41(S1): 120-125.
UMAIR Muhammad, ZUO Yi, LI Ke-yan, GUO Xin-wen. Gold/reduced graphene oxide/bismuth vanadate for photocatalytic degradation of organic contaminants. Modern Chemical Industry, 2021, 41(S1): 120-125.
链接本文:  
https://www.xdhg.com.cn/CN/10.16606/j.cnki.issn0253-4320.2021.S.024  或          https://www.xdhg.com.cn/CN/Y2021/V41/IS1/120
[1] Rajasulochana P,Vijay P.Comparison on efficiency of various techniques in treatment of waste and sewage water-A comprehensive review[J].Resour Technol,2016,2(4):175-184.
[2] Biswas M D,Cho J Y,Jang W K,et al.Synthesis of BiVO4-GO-PTFE nanocomposite photocatalysts for high efficient visible-light-induced photocatalytic performance for dyes[J].J Mater Sci Mater Electron,2017,28:15106-15117.
[3] Dariani R S,Esmaeili A,Mortezaali A,et al.Photocatalytic reaction and degradation of methylene blue on TiO2 nano-sized particles[J].Optik (Stuttg),2016,127:7143-7154.
[4] Rafatullah M,Sulaiman O,Hashim R,et al.Adsorption of methylene blue on low-cost adsorbents:A review[J].J Hazard Mater,2010,177(1-3):70-80.
[5] Ponnusami V,Madhuram R,Krithika V,et al.Effects of process variables on kinetics of methylene blue sorption onto untreated guava (Psidium guajava) leaf powder:Statistical analysis[J].Chem Eng J,2008,140(1-3):609-613.
[6] Wang D,Li J,Xu Z,et al.Preparation of novel flower-like BiVO4/Bi2Ti2O7/Fe3O4 for simultaneous removal of tetracycline and Cu2+:Adsorption and photocatalytic mechanisms[J].J Colloid Interface Sci,2019,533:344-357.
[7] Wang D,Jia F,Wang H,et al.Simultaneously efficient adsorption and photocatalytic degradation of tetracycline by Fe-based MOFs[J].J Colloid Interface Sci,2018,519:273-284.
[8] Wang W,Han Q,Zhu Z,et al.Enhanced photocatalytic degradation performance of organic contaminants by heterojunction photocatalyst BiVO4/TiO2/RGO and its compatibility on four different tetracycline antibiotics[J].Adv Powder Technol,2019,30(9):1882-1896.
[9] Soltani T,Tayyebi A,Lee B K.Photolysis and photocatalysis of tetracycline by sonochemically heterojunctioned BiVO4/reduced graphene oxide under visible-light irradiation[J].J Environ Manage,2019,232:713-721.
[10] Tan G,Zhang L,Ren H,et al.Effects of pH on the hierarchical structures and photocatalytic performance of BiVO4 powders prepared via the microwave hydrothermal method[J].ACS Appl Mater Interfaces,2013,5(11):5186-5193.
[11] Liu B,Lin L,Yu D,et al.Construction of fiber-based BiVO4/SiO2/reduced graphene oxide (RGO) with efficient visible light photocatalytic activity[J].Cellulose,2017,25:1089-1101.
[12] Qiu P,Park B,Choi J,et al.BiVO4/Bi2O3 heterojunction deposited on graphene for an enhanced visible-light photocatalytic activity[J].J Alloys Compd,2017,706:7-15.
[13] Huang W C,Lv L M,Yang Y C,et al.Synthesis of Cu2O nanocrystals from cubic to rhombic dodecahedral structures and their comparative photocatalytic activity[J].J Am Chem Soc,2012,134(2):1261-1267.
[14] Yang H,Jin Z,Liu D,et al.Visible light harvesting and spatial charge separation over the creative Ni/CdS/Co3O4 photocatalyst[J].J Phys Chem C,2018,122(19):10430-10441.
[15] Qiu P,Xu C,Chen H,et al.One step synthesis of oxygen doped porous graphitic carbon nitride with remarkable improvement of photo-oxidation activity:Role of oxygen on visible light photocatalytic activity[J].Appl Catal B Environ,2017,206:319-327.
[16] Liu X,Liang B,Zhang M,et al.Enhanced photocatalytic properties of α-SnWO4 nanosheets modified by Ag nanoparticles[J].J Colloid Interface Sci,2017,490:46-52.
[17] Li M,Xu G,Guan Z,et al.Synthesis of Ag/BiVO4/rGO composite with enhanced photocatalytic degradation of triclosan[J].Sci Total Environ,2019,664:230-239.
[18] Li Q,Guo B,Yu J,et al.Highly efficient visible-light-driven photocatalytic hydrogen production of CdS-cluster-decorated graphene nanosheets[J].J Am Chem Soc,2011,133(28):10878-10884.
[19] Pingmuang K,Wetchakun N,Kangwansupamonkon W,et al.Photocatalytic mineralization of organic acids over visible-light-driven Au/BiVO4 photocatalyst[J].Int J Photoenergy,2013,2013(3/4):1-7.
[20] Tahir M B,Iqbal T,Kiran H,et al.Insighting role of reduced graphene oxide in BiVO4 nanoparticles for improved photocatalytic hydrogen evolution and dyes degradation[J].Int J Energy Res,2019,43(6):2410-2417.
[21] Meng X,Li Z,Zhang Z.Palladium nanoparticles and rGO co-modified BiVO4 with greatly improved visible light-induced photocatalytic activity[J].Chemosphere,2018,198:1-12.
[22] Guo Y,Yang X,Ma F,et al.Additive-free controllable fabrication of bismuth vanadates and their photocatalytic activity toward dye degradation[J].Appl Surf Sci,2010,256(7):2215-2222.
[23] Li J,Chen Y,Chen C,et al.Solid-phase synthesis of visible-light-driven BiVO4 photocatalyst and photocatalytic reduction of aqueous Cr(Ⅵ)[J].Bull Chem React Eng Catal,2019,14(2):336-344.
[24] Zhang A,Zhang J,Cui N,et al.Effects of pH on hydrothermal synthesis and characterization of visible-light-driven BiVO4 photocatalyst[J].J Mol Catal A Chem,2009,304(1/2):28-32.
[25] Tan H L,Amal R,Ng Y H.Alternative strategies in improving the photocatalytic and photoelectrochemical activities of visible light-driven BiVO4:A review[J].J Mater Chem A,2017,5(32):16498-16521.
[26] Jiang H Q,Endo H,Natori H,et al.Fabrication and photoactivities of spherical-shaped BiVO4 photocatalysts through solution combustion synthesis method[J].J Eur Ceram Soc,2008,28(15):2955-2962.
[27] Usai S,Obregón S,Becerro A I,et al.Monoclinic-tetragonal heterostructured BiVO4 by yttrium doping with improved photocatalytic activity[J].J Phys Chem C,2013,117(46):24479-24484.
[28] Ahmad J,Majid K.In-situ synthesis of visible-light responsive Ag2O/graphene oxide nanocomposites and effect of graphene oxide content on its photocatalytic activity[J].Adv Compos Hybrid Mater,2018,1:374-388.
[29] Chen F,Yang Q,Zhong Y,et al.Photo-reduction of bromate in drinking water by metallic Ag and reduced graphene oxide (rGO) jointly modified BiVO4 under visible light irradiation[J].Water Res,2016,101:555-563.
[30] Fu Y,Sun X,Wang X.BiVO4-graphene catalyst and its high photocatalytic performance under visible light irradiation[J].Mater Chem Phys,2011,131(1/2):325-330.
[31] Appavu B,Thiripuranthagan S,Ranganathan S,et al.BiVO4/N-rGO nano composites as highly efficient visible active photocatalyst for the degradation of dyes and antibiotics in eco system[J].Ecotoxicol Environ Saf,2018,151:118-126.
[32] Biswas R U D,Oh W C.Synthesis of BiVO4-GO-PVDF nanocomposite:An excellent,newly designed material for high photocatalytic activity towards organic dye degradation by tuning band gap energies[J].Solid State Sci,2018,80:22-30.
[33] Van C N,Chang W S,Chen J W,et al.Heteroepitaxial approach to explore charge dynamics across Au/BiVO4 interface for photoactivity enhancement[J].Nano Energy,2015,15:625-633.
[34] Bao S,Wu Q,Chang S,et al.Z-scheme CdS-Au-BiVO4 with enhanced photocatalytic activity for organic contaminant decomposition[J].Catal Sci Technol,2016,7(1):124-132.
[35] Pookmanee P,Longchin P,Phanmalee J,et al.Performance photocatalytic degradation of methomyl onto composite graphene oxide/bismuth vanadate (GO/BiVO4) nanoparticle[J].Key Eng Mater,2017,751:701-706.
[36] Long M,Jiang J,Li Y,et al.Effect of gold nanoparticles on the photocatalytic and photoelectrochemical performance of Au modified BiVO4[J].Nanomicro Lett,2011,3:171-177.
[37] Du M,Xiong S,Wu T,et al.Preparation of a microspherical silver-reduced graphene oxide-bismuth vanadate composite and evaluation of its photocatalytic activity[J].Materials (Basel),2016,9(3):1-14.
[38] Yu C,Dong S,Zhao J,et al.Preparation and characterization of sphere-shaped BiVO4/reduced graphene oxide photocatalyst for an augmented natural sunlight photocatalytic activity[J].J Alloys Compd,2016,677:219-227.
[39] Yu Q,Tang Z R,Xu Y J.Synthesis of BiVO4 nanosheets-graphene composites toward improved visible light photoactivity[J].J Energy Chem,2014,23(5):564-574.
[40] Subramanyam P,Vinodkumar T,Nepak D,et al.Mo-doped BiVO4@reduced graphene oxide composite as an efficient photoanode for photoelectrochemical water splitting[J].Catalysts,2018,325:73-80.
[41] Wang Z,Wei Y,Wang X,et al.Plasmonic Au nanopraticles modified nanopyramid-arrays BiVO4 with enhanced photoelectrochemical activity[J].J Electrochem Soc,2019,166(5):3138-3145.
[1] 丁彤彤, 孙秀花, 高昌录. 自抛光防污涂料的研究进展[J]. 现代化工, 2021, 41(S1): 58-61,66.
[2] 黄强, 郭贵宝. 炭吸附纳米铁酸铋粉体的制备及其光催化性能研究[J]. 现代化工, 2021, 41(S1): 126-128,133.
[3] 李心, 郭琳, 黄金的, 王丽, 谢海泉, 叶立群. PVDF/BiOBr复合光催化剂的制备及超声强化降解RhB[J]. 现代化工, 2021, 41(S1): 143-149.
[4] 刘钰馨, 梁泽升, 廖梁燕, 梁家能. 4种不同表面性质纳米SiO2改性热塑性木薯淀粉的性能研究[J]. 现代化工, 2021, 41(S1): 179-182.
[5] 王振远, 李向阳, 李克艳, 郭新闻. Fe-Bi2WO6/TiO2异质结的构建及其光芬顿反应性能研究[J]. 现代化工, 2021, 41(S1): 183-188.
[6] 师倩莹, 张静, 郭雨菲, 龚浩, 张卫珂. 氧化锡/磁性纳米洋葱碳复合材料光催化降解罗丹明B的研究[J]. 现代化工, 2021, 41(S1): 241-248,255.
[7] 李大玉, 周逸文, 梅昕, 张超. 光催化涂层/薄膜材料的制备工艺及其结构调控研究进展[J]. 现代化工, 2021, 41(9): 38-42.
[8] 张宇, 毛磊, 张春桃, 梁文懂. 原位合成Cu-Fe3O4@花生壳炭及其非均相Fenton催化降解罗丹明B的研究[J]. 现代化工, 2021, 41(9): 86-91.
[9] 杨晓艳, 张金源, 李惠娟, 李榕, 杨东海, 梁坤. 酚醛树脂改性磁载TiO2复合材料的制备及太阳光催化性能的研究[J]. 现代化工, 2021, 41(9): 118-122,128.
[10] 宋瑾, 吴凤龙. 改性MCM-41负载铁基催化剂的制备及其催化降解亚甲基蓝的研究[J]. 现代化工, 2021, 41(9): 155-159,164.
[11] 李靖, 王瑜, 余艳, 邱超, 吴光亮, 陈艳, 杨华美. AlgCa/TiO2凝珠吸附-紫外光催化协同去除水中Cr(Ⅵ)的研究[J]. 现代化工, 2021, 41(8): 128-132,138.
[12] 张洪雨, 董静贤, 吴雪芹, 徐红, 钟毅, 毛志平, 张琳萍. PVP改性BiOI光催化降解抗生素的研究[J]. 现代化工, 2021, 41(8): 173-176,181.
[13] 冯兰惠, 包木太, 杨玉双, 胡鑫. BiO2-x/Bi2WO6的制备及其超声辅助光催化降解四环素的研究[J]. 现代化工, 2021, 41(8): 182-186,192.
[14] 张双双, 田跃儒. g-C3N4负载磷钨酸及其光催化固氮性能的研究[J]. 现代化工, 2021, 41(8): 203-207.
[15] 鲁麒, 魏香婷, 姚菁华, 肖雷. 微生物共培养降解多环芳烃研究进展[J]. 现代化工, 2021, 41(6): 46-50,54.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备09035943号-37
版权所有 © 《现代化工》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn