Please wait a minute...
 
最新公告: 重要提醒:骗子冒充编辑部要求加作者微信,谨防上当!   关于暑假、寒假期间版面费发票及期刊样刊延迟邮寄的通知    
现代化工  2020, Vol. 40 Issue (S1): 246-249    DOI: 10.16606/j.cnki.issn0253-4320.2020.S.054
  工业技术 本期目录 | 过刊浏览 | 高级检索 |
生物法脱除烟气中SO2工艺的研究
刘鑫鑫, 胡永红
南京工业大学生物与制药工程学院, 江苏 南京 210000
Research on process to remove SO2 from flue gas by biological method
LIU Xin-xin, HU Yong-hong
College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 210000, China
下载:  PDF (1736KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 在生物脱硫模拟装置上进行SO2脱除实验,结果显示温度对系统脱硫效率影响明显,30℃左右出现最大值;随着进气浓度的增大即进气负荷的增大,生物脱硫系统的脱除负荷逐渐增大,脱硫效率不断下降;随着气液比的增大,吸收效率下降,最佳气液比为30:1;脱硫效率和硫酸盐产率都随着曝气量的增大而增大,硫产率随曝气量的增加先增大后减小;控制氧化还原电位(ORP)值可以有效地提高单质硫产率,ORP控制在-300~-200 mV之间时单质硫生成率在91.5%以上。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘鑫鑫
胡永红
关键词:  生物脱硫  工艺优化  脱硫效率  产物选择性    
Abstract: SO2 removal experiment is conducted on a biological desulfurization simulation device.The results show that temperature has a significant effect on the system's desulfurization efficiency,with a maximum efficiency appearing at around 30℃.As the concentration of inlet gas increases,the desulfurization load of the biological desulfurization system increases gradually,and the desulfurization efficiency is decreasing continuously.As the ratio of gas-liquid increases,the absorption efficiency drops,and the optimal gas-liquid ratio is 30:1.Desulfurization efficiency and sulfate yield both increase with the increasing aeration,and sulfur yield increases first and decreases then with the increase of aeration.Controlling ORP value can improve effectively the yield of elemental sulfur.The generation rate of elemental sulfur can exceed 91.5% when ORP is controlled between -300 mV and -200 mV.
Key words:  biological desulfurization    process optimization    desulfurization efficiency    product selectivity
收稿日期:  2020-05-09      修回日期:  2020-08-02           出版日期:  2020-10-31
ZTFLH:  TQ016  
通讯作者:  胡永红(1968-),女,博士,教授,研究方向为微生物发酵、生物化工,通讯联系人,hyh@njtech.edu.cn。    E-mail:  hyh@njtech.edu.cn
作者简介:  刘鑫鑫(1994-),男,硕士,研究方向为生物法烟气脱硫,lxxdlut@163.com
引用本文:    
刘鑫鑫, 胡永红. 生物法脱除烟气中SO2工艺的研究[J]. 现代化工, 2020, 40(S1): 246-249.
LIU Xin-xin, HU Yong-hong. Research on process to remove SO2 from flue gas by biological method. Modern Chemical Industry, 2020, 40(S1): 246-249.
链接本文:  
https://www.xdhg.com.cn/CN/10.16606/j.cnki.issn0253-4320.2020.S.054  或          https://www.xdhg.com.cn/CN/Y2020/V40/IS1/246
[1] Wang B,Yuan X,Han L,et al.Release and bioavailability of heavy metals in three typical mafic tailings under the action of Bacillus mucilaginosus and Thiobacillus ferrooxidans[J].Environ Earth Sci,2015,74:5087-5096.
[2] Lu X,Li X,Qian J,et al.Synthesis and characterization of CeO2/TiO2 nanotube arrays and enhanced photocatalytic oxidative desulfurization performance[J].Journal of Alloys and Compounds,2016,661:363-371.
[3] Flytzani-Stephanopoulos M,Sakbodin M,Wang Z.Regenerative adsorption and removal of H2S from hot fuel gas streams by rare earth oxides[J].Science,2006,312(5779):1508-1510.
[4] Srivastava V C.An evaluation of desulfurization technologies for sulphur removal from liquid fuels[J].RSC Adv,2012,2:759-783.
[5] Ma W T,Haslbeck J L.NOXSO SO2/NOx flue gas treatment process Proof-of-Concept test[J].Environmental Progress & Sustainable Energy,2010,12(3):163-168.
[6] Colmer A R,Hinkle M E.The role of microorganisms in acid mine drainage:A preliminary report[J].Science,1947,106(2751):253-256.
[7] Zhu F.Industrial application of a deep purification technology for flue gas involving phase-transition agglomeration and dehumidification[J].Engineering,2018,4(3):416-420.
[8] Li L,Liao Y,Luo Y,et al.Improved efficiency of the desulfurization of oil sulfur compounds in Escherichia coli using a combination of desensitization engineering and DszC overexpression[J].ACS Synthetic Biology,2019,8(6):1441-1451.
[9] 段威,姚宣,陈鸥,等.燃煤电厂脱硫废水重金属脱除技术研究进展[J].盐科学与化工,2019,48(10):1-5.
[10] 田斌.湿法脱硫技术问题及脱硫效率探讨[J].电力科技与环保,2008,24(5):35-37.
[11] Kuenen J G,Robertson L A.The use of natural bacterial populations for the treatment of sulfur containing wastewater[J].Biodegradation,1992,3(2):239-254.
[12] 左剑恶,袁琳.利用无色硫细菌氧化废水中硫化物的研究[J].环境科学,1995,16(6):7-10.
[13] 谢苹,张书良,杨科科.微氧环境下无色硫细菌和硫酸盐还原菌脱硫[J].环境工程学报,2013,7(1):306-310.
[14] Schrenk M O.Distribution of Thiobacillus ferrooxidans and Leptospirillum ferrooxidans:Implications for generation of acid mine drainage[J].Science,1998,279(5356):1519-1522.
[15] Li X T.Kinetics study of absorption solution Fe2+ regeneration of Bio-SR process[J].Chemical Engineering of Oil & Gas,2008,106(48):12575-12583.
[16] Mishra D,Kim D J,Ralph D E,et al.Bioleaching of metals from spent lithium ion secondary batteries using Acidithiobacillus ferrooxidans[J].Waste Management,2008,28(2):333-338.
[17] Paul E,Plisson-Saune S,Mauret M,et al.Process state evaluation of alternating oxic-anoxic activated sludge using ORP,pH and DO[J].Water Science & Technology,1998,38(3):299-306.
[18] Chrysikopoulos C V,Hsuan P Y,Fyrillas M M.Bootstrap estimation of the mass transfer coefficient of a dissolving nonaqueous phase liquid pool in porous media[J].Water Resources Research,2002,38(3):81-86.
[19] Hansen E,Mollerup J.Application of the two-film theory to the determination of mass transfer coefficients for bovine serum albumin on anion-exchange columns[J].Journal of Chromatography A,1998,827(2):259-267.
[20] Mondal A,Balasubramanian S.Molecular dynamics investigation of efficient SO2 absorption by anion-functionalized ionic liquids[J].Journal of Chemical Ences,2017,129(7):1-14.
[21] Liu K,Gao X,Xing Q,et al.Adsorption kinetics of platinum group elements onto macromolecular organic matter in seawater[J].Acta Oceanologica Sinica English Edition,2019,38(8):8-16.
[22] Chen H,Li W.Solubilizer enhanced biodesulfurization of the simulated diesel[J].Journal of Chemical Engineering of Chinese Universities,2017,31(3):720-725.
[1] 葛思达, 杨欢欢, 王刚, 方东, 韩建年, 党法璐, 刘梦林. 催化裂化汽油C5和C6烯烃临氢反应性能的研究[J]. 现代化工, 2020, 40(3): 77-81.
[2] 刘亚龙. 络合铁硫磺回收系统工艺优化[J]. 现代化工, 2019, 39(S1): 164-165.
[3] 徐闯, 冯逸茹, 于丹丹, 徐鹏, 张守献. 一株嗜热脱硫菌株的筛选及其生物脱硫性能研究[J]. 现代化工, 2019, 39(9): 111-113,118.
[4] 郑磊, 岳金彩, 王宁, 郑世清. 2,2-二甲基-1,3-环氧丙烷水解制取新戊二醇工艺优化[J]. 现代化工, 2019, 39(4): 221-224.
[5] 柳宏伟, 董国亮, 杨德志, 孔爱平, 黄虎. Novolen聚丙烯装置高压氮气系统工艺优化[J]. 现代化工, 2019, 39(10): 174-177.
[6] 张朝正, 徐迎, 李杰, 赵津莹, 兰晓彤. 噻吩降解菌的分离、鉴定及培养条件优化[J]. 现代化工, 2018, 38(4): 77-81.
[7] 王成, 邵春宇, 姚劲, 唐明兴. 两段加氢生产溶剂油工艺优化[J]. 现代化工, 2018, 38(4): 186-188,190.
[8] 马跃强, 易红宏, 唐晓龙, 杨仲禹, 赵顺征, 冯铁成, 杨茜, 崔晓旭, 杜琤赪. 生石灰消化特性及其对SDA法烟气脱硫性能的研究[J]. 现代化工, 2018, 38(3): 169-172.
[9] 于紫荆, 肖雷. 分子酶学在石油脱硫中的研究进展[J]. 现代化工, 2018, 38(10): 38-42.
[10] 李红明, 位朋. CO2汽提尿素技术发展研究[J]. 现代化工, 2018, 38(10): 200-203.
[11] 郭省学, 徐闯, 徐鹏, 王淋, 袁长忠, 张守献, 汤晓东, 汪卫东. 孤岛油田污水生物脱硫保黏技术应用[J]. 现代化工, 2018, 38(1): 180-182.
[12] 杨春和, 李贤. 氨法烟气脱硫制亚硫酸氢铵过程模拟优化[J]. 现代化工, 2017, 37(3): 199-202.
[13] 邹高兴, 王勇, 罗志龙, 李萌, 徐其鹏. 水悬浮造粒法溶剂回收系统工艺优化[J]. 现代化工, 2017, 37(12): 158-159,161.
[14] 韩晓霞, 程铭, 刘树森, 赵超凡, 任军. 化工过程的多目标优化问题[J]. 现代化工, 2017, 37(11): 194-197,199.
[15] 郭睿, 李云鹏, 宋博, 马兰, 土瑞香, 王映月, 郭煜. 响应面法优化3-溴丁基-5,5-二甲基海因的制备工艺[J]. 现代化工, 2017, 37(10): 105-109.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备09035943号-37
版权所有 © 《现代化工》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn