Please wait a minute...
 
最新公告: 重要提醒:骗子冒充编辑部要求加作者微信,谨防上当!   关于暑假、寒假期间版面费发票及期刊样刊延迟邮寄的通知    
现代化工  2020, Vol. 40 Issue (S1): 49-53    DOI: 10.16606/j.cnki.issn0253-4320.2020.S.011
  技术进展 本期目录 | 过刊浏览 | 高级检索 |
硫酸根自由基高级氧化技术的发展及应用
王行梁1, 李晓良1, 王子2, 郑兴1, 路思佳1, 朱惠良2, 邵飞2
1. 西安理工大学西北旱区生态水利国家重点实验室, 陕西 西安 710048;
2. 国家环保设备质量监督检验中心, 江苏 宜兴 214200
Development and application of advanced oxidation technology based on sulfate radical
WANG Xing-liang1, LI Xiao-liang1, WANG Zi2, ZHENG Xing1, LU Si-jia1, ZHU Hui-liang2, SHAO Fei2
1. State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an 710048, China;
2. China National Center for Quality Supervision and Inspection of Environmental Protection Equipment, Yixing 214200, China
下载:  PDF (1531KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 硫酸根自由基(SO4-·)高级氧化技术近年来发展迅速。对过硫酸盐活化方式进行了系统的总结,比较了各方式的优点与不足,阐述了该高级氧化技术在环境治理领域中的应用,并对其应用前景及发展趋势进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王行梁
李晓良
王子
郑兴
路思佳
朱惠良
邵飞
关键词:  高级氧化  硫酸根自由基  活化方式  环境治理  应用前景    
Abstract: Advanced oxidation technologies based on sulfate radical have developed rapidly in recent years.Various activation methods for persulfate are reviewed systemically,and their advantages and disadvantages are compared and analyzed.Meanwhile,the application of sulfate radical based advanced oxidation technology in the field of environment governance is described.The application prospect and development trend of the technology are also expected.
Key words:  advanced oxidation    sulfate radical    activation methods    environment governance    application prospects
收稿日期:  2020-03-01      修回日期:  2020-05-28           出版日期:  2020-10-31
ZTFLH:  TQ118  
基金资助: 陕西省自然科学基金(2019JQ-735);江苏省自然科学基金(BK20150165);陕西省科技厅国际合作基金(2017KW-041)
通讯作者:  李晓良(1988-),男,博士,讲师,主要从事环境治理方面的研究,通讯联系人,lixiaoliang@xaut.edu.cn。    E-mail:  lixiaoliang@xaut.edu.cn
作者简介:  王行梁(1997-),男,硕士生,研究方向为高级氧化技术,17684716016,hangliangwang@qq.com
引用本文:    
王行梁, 李晓良, 王子, 郑兴, 路思佳, 朱惠良, 邵飞. 硫酸根自由基高级氧化技术的发展及应用[J]. 现代化工, 2020, 40(S1): 49-53.
WANG Xing-liang, LI Xiao-liang, WANG Zi, ZHENG Xing, LU Si-jia, ZHU Hui-liang, SHAO Fei. Development and application of advanced oxidation technology based on sulfate radical. Modern Chemical Industry, 2020, 40(S1): 49-53.
链接本文:  
https://www.xdhg.com.cn/CN/10.16606/j.cnki.issn0253-4320.2020.S.011  或          https://www.xdhg.com.cn/CN/Y2020/V40/IS1/49
[1] 丁凤.零价铁催化过硫酸盐高级氧化工艺高效降解印染废水[D].长春:吉林大学,2017.
[2] Guo C,Wang K,Hou S,et al.H2O2 and/or TiO2 photocatalysis under UV irradiation for the removal of antibiotic resistant bacteria and their antibiotic resistance genes[J].Journal of Hazardous Materials,2017,323(Part B):710-718.
[3] 侯先宇,陈炜鸣,李启彬,等.微波活化过硫酸盐耦合混凝处理二硝基重氮酚工业废水[J].中国环境科学,2018,38(12):4551-4558.
[4] Fang Z,Chelme-Ayala P,Shi Q,et al.Degradation of naphthenic acid model compounds in aqueous solution by UV activated persulfate:Influencing factors,kinetics and reaction mechanisms[J].Chemosphere,2018,211:271-277.
[5] Hori H,Yamamoto A,Hayakawa E,et al.Efficient decomposition of environmentally persistent perfluorocarboxylic acids by use of persulfate as a photochemical oxidant[J].Environmental Science & Technology,2005,39(7):2383-2388.
[6] 薛洪海,高斯屿,付依,等.紫外活化过硫酸盐技术去除水中人工甜味剂的研究进展[J].科学技术与工程,2019,19(32):17-23.
[7] Wang Y,Chu W.Degradation of 2,4,5-trichlorophenoxyacetic acid by a novel electro-Fe(Ⅱ)/oxone process using iron sheet as the sacrificial anode[J].Water Research,2011,45(13):3883-3889.
[8] Farhat A,Keller J,Tait S,et al.Removal of persistent organic contaminants by electrochemically activated sulfate[J].Environmental Science & Technology,2015,49(24):14326-14333.
[9] 邹徐.BDD电极电化学氧化去除水中典型农药特性及机理研究[D].长沙:湖南大学,2018.
[10] Aseev G,Batoeva A,Sizykh R,et al.Sono-photocatalytic degradation of 4-chlorophenolinaqueous solutions[J].Russian Journal of Physical Chemistry A,2018,92(6):1813-1819.
[11] 王倩.水力空化强化过硫酸盐氧化处理染料废水的效能和机理研究[D].杭州:浙江工商大学,2019.
[12] Angkaew A,Sakulthaew C,Satapanajaru T,et al.UV-activated persulfate oxidation of 17β-estradiol:Implications for discharge water remediation[J].Journal of Environmental Chemical Engineering,2019,7(2):2213-2221.
[13] Furman O,Teela A,Watts A.Mechanism of base activation of persulfate[J].Environmental Science & Technology,2010,44(16):6423-6428.
[14] 郭忠凯.硫酸根自由基的定量分析技术及在高级氧化工艺中的应用[D].哈尔滨:哈尔滨工业大学,2014.
[15] Peng W,Liu J,Li C,et al.A multipath peroxymonosulfate activation process over supported by magnetic CuO-Fe3O4 nanoparticles for efficient degradation of 4-chlorophenol[J].Korean Journal of Chemical Engineering,2018,35(8):1662-1672.
[16] Liang C,Lin Y T,Shin W H.Persulfate regeneration of trichloroethylene spent activated carbon[J].Journal of Hazardous Materials,2009,168(1):187-192.
[17] Yin R,Guo W,Wang H,et al.Singlet oxygen-dominated peroxydisulfate activation by sludge derived biochar for sulfamethoxazole degradation through a nonradical oxidation pathway:Performance and mechanism[J].Chemical Engineering Journal,2019,357:589-599.
[18] Lin K Y A,Chen S Y,Jochems A P.Zirconium-based metal organic frameworks:Highly selective adsorbents for removal of phosphate from water and urine[J].Materials Chemistry and Physics,2015,160:168-176.
[19] Pu M,Guan Z,Ma Y,et al.Synthesis of iron-based metal-organic framework MIL-53 as an efficient catalyst to activate persulfate for the degradation of Orange G in aqueous solution[J].Applied Catalysis A,General,2018,549:82-92.
[20] Li H,Tian J,Zhu Z,et al.Magnetic nitrogen-doped nanocarbons for enhanced metal free catalytic oxidation:Integrated experimental and theoretical investigations for mechanism and application[J].Chemical Engineering Journal,2018,354:507-516.
[21] 朱维晃,王宏伟,刘文奇.对苯醌活化过硫酸盐降解罗丹明B的动力学特征及其影响因素[J].中国环境科学,2016,36(6):1732-1737.
[22] Chu L,Zhuan R,Chen D,et al.Degradation of macrolide antibiotic erythromycin and reduction of antimicrobial activity using persulfate activated by gamma radiation in different water matrices[J].Chemical Engineering Journal,2019,361:156-166.
[23] Takdastan A,Kakavandi B,Azizi M.Efficient activation of peroxymonosulfate by using ferroferric oxide supported on carbon UV/US system:A new approach into catalytic degradation of bispheno-l A[J].Chemical Engineering Journal,2018,331:729-743.
[24] 付冬彬,陈盈盈,王广生,等.超声联合热活化过硫酸盐处理垃圾渗滤液[J].水处理技术,2019,45(12):125-128.
[25] 王超慧,李卫平,高乃云.热激活过硫酸盐降解莠灭净的动力学研究[J].应用化工,2017,46(3):453-456,459.
[26] EPA.In situ treatment technologies for contaminated soil[R].EPA,Engineering Forum Issue Paper,2006,EPA-542/F-06/013.
[27] 赵妍.铁锰材料活化过硫酸盐去除水中难降解有机污染物的机制与效能[D].长春:吉林大学,2017.
[28] 韩美玲,张锦,杨明君,等.活化过硫酸盐处理酚类废水的研究进展[J].应用化工,2019,48(10):2465-2469.
[29] 薛茂.Fe(Ⅱ)过硫酸盐调理污泥过程中EPS亲疏水组成的影响与调控[D].哈尔滨:哈尔滨工业大学,2019.
[30] 刘荣荣.硫酸根自由基联合调理法改善污泥脱水性能的实验研究[D].西安:西安理工大学,2018.
[1] 冯丽娜, 黄丽坤, 王广智, 徐媛媛, 申海瑞, 周思敏, 陈红芳. 焚烧厂垃圾渗沥液深度处理的研究进展[J]. 现代化工, 2020, 40(9): 35-40.
[2] 刘明庆, 申静秀, 范梦婕, 陈英文, 沈树宝. 微污染有机物深度净化技术进展[J]. 现代化工, 2020, 40(8): 31-34,38.
[3] 安璐, 肖鹏飞. 活性炭活化过硫酸钠氧化降解盐酸金霉素的研究[J]. 现代化工, 2020, 40(8): 103-106,112.
[4] 李亚林, 刘蕾, 周涛, 王尊严, 毕雅洁, 陈高昂. 电渗透交变电场联合双氧化技术污泥深度脱水研究[J]. 现代化工, 2020, 40(8): 180-184,189.
[5] 田洁, 刘宝友. VOCs治理技术分析及研究进展[J]. 现代化工, 2020, 40(4): 30-35.
[6] 袁瑞霞, 蒋中秋, 于鹏. 无金属石墨烯降解水中有机污染物的研究进展[J]. 现代化工, 2020, 40(3): 48-51.
[7] 冉孟家, 谷晋川, 余乐. TiO2/锂硅粉-H2O2体系光催化降解邻苯二甲酸二甲酯机理分析[J]. 现代化工, 2020, 40(3): 167-171,175.
[8] 王勇, 刘静, 张亚茹, 黄青丹, 曾炼. 高分子干燥剂的研究进展[J]. 现代化工, 2019, 39(S1): 99-103.
[9] 赵文莉, 王广智, 弋凡, 朱天琳. 过硫酸盐活化技术的研究进展[J]. 现代化工, 2018, 38(7): 53-56.
[10] 韩娜, 苏瑞, 王知贺, 谢艾玲, 李季, 徐仕翀. 软/硬磁纳米复相永磁材料制备及应用研究现状[J]. 现代化工, 2018, 38(6): 20-23.
[11] 张宏杰, 岳红彦, 高鑫, 王宝, 关恩昊, 宋姗姗, 王唯一. MnO2纳米片阵列的制备方法和应用现状[J]. 现代化工, 2018, 38(3): 67-70.
[12] 张娟, 黄彦旻, 吴斌程, 王平, 陈丽玮. 羟胺强化Fe (Ⅱ)/过一硫酸盐体系降解氯酚的研究[J]. 现代化工, 2017, 37(8): 94-97,99.
[13] 林轩宇, 岳红彦, 高鑫, 张虹, 姚龙辉, 王宝. 金属氧化物/三维泡沫石墨烯的制备方法和应用现状研究[J]. 现代化工, 2017, 37(1): 33-35.
[14] 林轩宇, 岳红彦, 高鑫, 张虹, 姚龙辉, 郭二军. 三维石墨烯空心球的制备及应用现状研究[J]. 现代化工, 2016, 36(7): 56-58.
[15] 李莹, 张红星, 闫柯乐, 杨静怡, 孙晓英, 邹兵. MOFs膜的制备方法及其应用研究[J]. 现代化工, 2016, 36(12): 28-32.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备09035943号-37
版权所有 © 《现代化工》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn