Please wait a minute...
 
最新公告: 关于寒假期间版面费发票延迟邮寄的通知    
现代化工  2018, Vol. 38 Issue (8): 139-142,144    DOI: 10.16606/j.cnki.issn0253-4320.2018.08.030
  科研与开发 本期目录 | 过刊浏览 | 高级检索 |
Ni改性Cu-Fe基催化剂的制备及其在CO加氢制低碳醇中的性能研究
段玉梅, 郑长征, 李亚斐, 丁羽佳, 张兴
西安工程大学环境与化学工程学院, 陕西 西安 710048
Synthesis of Ni modified Cu-Fe based catalyst and its catalytic performance in production of low-carbon alcohols through CO hydrogenation
DUAN Yu-mei, ZHENG Chang-zheng, LI Ya-fei, DING Yu-jia, ZHANG Xing
School of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an 710048, China
下载:  PDF (1429KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用分步沉淀法制备了不同Cu/Ni摩尔比的CuFeNi/ZnO催化剂,并采用X射线衍射、N2物理吸附等手段对催化剂的结构进行表征。考察了其催化CO加氢合成低碳混合醇的反应性能,同时探究了反应温度及反应压力对催化剂催化性能的影响。结果表明,少量Ni助剂的加入可以增加催化剂比表面积,提高CuO的分散度,促进碳链增长,提高液相产物中C2+醇的选择性。当Cu/Ni摩尔比为7∶1时,催化剂的比表面积达到最大(85.09 m2/g),醇的选择性较高,C2+醇与甲醇的质量比最大为0.67,C2+醇在液相产物中的质量分数最高。在空速为5 000 h-1V(H2)/V(CO)=2时以Cu7FeNi1.0/ZnO催化剂合成低碳醇中,当反应温度为340℃、反应压力为6 MPa时,更有利于C2+醇生成,尤其是异丙醇的选择性较高。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
段玉梅
郑长征
李亚斐
丁羽佳
张兴
关键词:  CuFeNi/ZnO催化剂  Cu/Ni摩尔比  合成气  低碳醇  反应条件    
Abstract: A series of CuFeCrNi/ZnO catalysts with different Cu/Ni molar ratios (7/0.5,7/1.0,7/1.5,7/2.0) are prepared by stepwise precipitation method and their structures are characterized by nitrogen adsorption and XRD,etc.The catalytic performances of CuFeCrNi/ZnO catalysts in CO hydrogenation to make low-carbon alcohols are evaluated and the effects of reaction temperature and pressure on the catalytic properties of the catalysts are investigated by means of a continuous flow fixed bed micro-reactor.The results indicate that the addition of small amount of Ni auxiliary can help catalysts to expand BET surface area,facilitate the dispersion degree of oxide copper,promote the growth of carbon chain and increase the selectivity of C2+OH.Under a Cu/Ni ratio of 7/1.0,the prepared catalyst exhibits the highest BET surface area (85.09 m2·g-1),a higher selectivity of alcohols,the highest mass ratio of C2+OH to MeOH (0.67) and the maximum content of C2+OH in the liquid products.The conditions that are beneficial to the formation of C2+OH,especially propanol,in the synthesis of low-carbon alcohols over Cu7FeNi1.0/ZnO catalyst are as follows:reaction temperature is at 340℃,reaction pressure is 6 MPa,GHSV=5 000 h-1 and V(H2)/V(CO)=2.
Key words:  CuFeNi/ZnO catalyst    Cu/Ni ratio    syngas    low-carbon alcohols    reaction condition
收稿日期:  2017-12-15      修回日期:  2018-06-11           出版日期:  2018-08-20
TQ426  
基金资助: 陕西省工业科技攻关项目(2016GY-171);西安工程大学研究生创新基金项目(CX201707)
通讯作者:  郑长征(1959-),男,博士,教授,研究方向为煤化工及功能化材料,通讯联系人,zgcgzg@126.com    E-mail:  zgcgzg@126.com
作者简介:  段玉梅(1993-),女,硕士研究生,主要从事合成气制低碳醇催化剂研究,649008808@qq.com。
引用本文:    
段玉梅, 郑长征, 李亚斐, 丁羽佳, 张兴. Ni改性Cu-Fe基催化剂的制备及其在CO加氢制低碳醇中的性能研究[J]. 现代化工, 2018, 38(8): 139-142,144.
DUAN Yu-mei, ZHENG Chang-zheng, LI Ya-fei, DING Yu-jia, ZHANG Xing. Synthesis of Ni modified Cu-Fe based catalyst and its catalytic performance in production of low-carbon alcohols through CO hydrogenation. Modern Chemical Industry, 2018, 38(8): 139-142,144.
链接本文:  
http://www.xdhg.com.cn/CN/10.16606/j.cnki.issn0253-4320.2018.08.030  或          http://www.xdhg.com.cn/CN/Y2018/V38/I8/139
[1] 门秀杰,崔德春,于广欣,等.合成气制低碳醇技术在中国的研究进展及探讨[J].现代化工,2013,33(12):21-25.
[2] 胡伟.合成气制低碳醇Cu-Fe催化剂的制备及改性机制研究[D].上海:华东理工大学,2017.
[3] Jie S,Qiu X C,Yan W,et al.Promotional effects of cesium promoter on higher alcohol synthesis from syngas over cesium-promoted Cu/ZnO/Al2O3 catalysts[J].ACS Catal,2016,6:5771-5785.
[4] Kararin M Walter,Martin Schubert,Wolfgang,et al.Effect of the addition of ethanol to synthesis gas on the production of higher alcohols over Cs and Ru modified Cu/ZnO catalysts[J].Ind Eng Chem Res,2015,54:1452-1463.
[5] 张建国,宋昭峥,史德文.合成气合成低碳混合醇技术的研究[J].现代化工,2007,27:494-496.
[6] Shi L M,Chu W,Deng S Y J.Studies on higher alcohols from syngas over the La promoted CuCo catalysts[J].Fuel Chem Technol,2012,40:436-440.
[7] 韩涛,黄伟,王晓东,等.Ce-Cu-Co/CNTs催化剂催化合成气制低碳醇及乙醇的研究[J].物理化学学报,2014,30(11):2127-2133.
[8] Guo H J,Zhang H R,Peng F,et al.Effects of Cu/Fe ratio on structure and performance of attapulgite supported CuFeCo-based catalyst for mixed alcohols synthesis from syngas[J].Applied Catalysis A:General,2015,503:51-61.
[9] 郭强胜,毛东森,俞俊,等.不同载体对负载型Cu-Fe催化剂CO加氢反应性能的影响[J].燃料化学学报,2012,40(9):1103-1109.
[10] 罗彩容,熊莲,郭海军.碱金属对CO加氢制备低碳醇Cu-Fe-Co基催化剂的影响[J].高校化学工程学报,2012,26(5):823-828.
[11] Shi Xuemin,Yang Xuzhuang,Bai Fenghua,et al.Progress in additives of molybdenum based catalysts for higher alcohol synthesis from syngas[J].Chemical Industry and Engineering Process,2010,29(12):2291-2297.
[12] Tang X B,Tsubaki N,Xie H J,et al.Effect of modifiers on the performance of Cu-ZnO-based catalysts for low-temperature methanol synthesis[J].Journal of Fuel Chemistry & Technology,2014,42(6):704-709.
[13] Li D B,Qi H J,Li,et al.Surficial structure and charge effects of Ni promoted K2CO3/MoS2 catalysts for higher alcohols synthesis[J].Acta Physico-Chimica Sinica,2006,22(9):1132-1136.
[14] Li D B,Yang C,Zhao N,et al.The performances of higher alcohol synthesis over nickel modified K2CO3/MOS2 catalyst[J].Fuel Processing Technology,2007,88(2):125-127.
[15] Hu W,Li W,Shen R.CTAB-promoted MnCuFe/ZnO catalyst for the hydrogenation reaction of CO to low carbon alcohols[J].Energy Technology,2016,5(4):557-567.
[16] 王宪贵.CO加氢合成低碳醇的研究[D].北京:中国矿业大学(北京),2013.
[17] 姜涛,牛玉琴,钟炳.CO+H2合成醇体系的化学平衡分析[J].天然气化工,1999,(2):27-32.
[1] 钟超泽, 陈前林, 敖先权, 曹阳. 不同Rh负载量对Rh-Cu-Co-K/LDHs催化合成气制乙醇性能的影响[J]. 现代化工, 2018, 38(8): 161-165.
[2] 吴红梅, 郭宇, 吕兴旺, 陈强强, 殷慧敏. 煤基含氮合成气一步法制二甲醚工艺的模拟与优化[J]. 现代化工, 2018, 38(5): 205-209,211.
[3] 胡厚道, 邢安亮, 杜天龙, 曾悦, 李晓娟, 刘美. 渣油加氢催化剂的构效关系研究进展[J]. 现代化工, 2017, 37(7): 36-39.
[4] 李代红, 王洪波. 合成气制乙二醇市场及技术进展[J]. 现代化工, 2017, 37(1): 5-8,10.
[5] 夏航, 杨霞珍, 霍超, 刘化章. 合成气一步制取低碳烯烃铁基催化剂的研究进展[J]. 现代化工, 2016, 36(8): 19-23.
[6] 李崇杰, 宋海岩, 张晗, 温晓雨, 张雪, 昝杰, 杜蕾, 董天贺. 基于Aspen Plus的合成气制乙二醇流程模拟及设计创新[J]. 现代化工, 2016, 36(11): 179-182.
[7] 王小波, 冯宜鹏, 刘安琪, 赵增立, 李海滨, 陈勇. 城市生活垃圾气化粗燃气与甲烷气流床高温重整制合成气模拟计算[J]. 现代化工, 2016, 36(1): 171-175.
[8] 屈江文, 张国杰, 苏爱廷. CH4-CO2催化重整制合成气Co-MgO/活性炭催化剂的制备及性能[J]. 现代化工, 2015, 35(8): 124-128.
[9] 段明哲, 许明杰. 浆态床反应器在国内合成气转化领域的研究进展[J]. 现代化工, 2015, 35(8): 28-30,32.
[10] 姜剑锋, 张波, 邓冰心, 陈银飞. 干燥温度及反应条件对SiO2-TiO2复合气凝胶环氧化催化性能的影响[J]. 现代化工, 2015, 35(7): 69-72.
[11] 苗强, 王理. 新型甲烷化反应器及其系统的研究[J]. 现代化工, 2015, 35(7): 108-111.
[12] 李庆勋, 刘晓彤, 刘克峰, 肖海成, 孔繁华. 二氧化碳重整甲烷制合成气研究进展及经济性探讨[J]. 现代化工, 2015, 35(2): 5-8.
[13] 诸林, 蒋鹏. 化学链重整制合成气过程模拟[J]. 现代化工, 2014, 34(5): 161-164.
[14] 赵亚,刘志军等. 中空纤维膜反应器内合成气发酵制氢的研究[J]. , 2011, 31(9): 0-0.
[15] 李振宇,黄格省,杨延翔,李顶杰. 燃料乙醇生产技术路线分析及产业发展建议[J]. , 2011, 31(8): 0-0.
[1] . [J]. Modern Chemical Industry, 2015, 35(11): 77 -80 .
[2] . [J]. Modern Chemical Industry, 2015, 35(12): 128 -130,132 .
[3] . [J]. Modern Chemical Industry, 2017, 37(6): 103 -0106,108 .
[4] . [J]. , 2003, 23(5): 0 .
[5] . [J]. , 2009, 29(6): 0 .
[6] . [J]. , 2010, 30(3): 0 .
[7] . [J]. , 2010, 30(7): 0 .
[8] . [J]. , 2007, 27(2): 0 .
[9] . [J]. Modern Chemical Industry, 2014, 34(2): 131 -133 .
[10] . [J]. Modern Chemical Industry, 2014, 34(4): 14 -16 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备09035943号-37
版权所有 © 《现代化工》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn