Please wait a minute...
 
最新公告: 关于寒假期间版面费发票延迟邮寄的通知    
现代化工  2018, Vol. 38 Issue (8): 112-116    DOI: 10.16606/j.cnki.issn0253-4320.2018.08.024
  科研与开发 本期目录 | 过刊浏览 | 高级检索 |
载体TiO2晶型对甲醇选择氧化性能的影响
刘经伟1,2, 傅玉川2, 沈俭一2
1. 中国石化扬子石油化工有限公司南京研究院, 江苏 南京 210048;
2. 南京大学化学化工学院, 江苏 南京 210023
Effect of TiO2 crystalline type on selective oxidation performance of methanol
LIU Jing-wei1,2, FU Yu-Chuan2, SHEN Jian-yi2
1. Nanjing Research Institute, Sinopec Yangzi Petrochemical Company Ltd., Nanjing 210048, China;
2. School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
下载:  PDF (1489KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 以比表面积相近的锐钛和金红石TiO2为载体,制备了负载钒氧和硫酸根物种的催化剂,比较了催化甲醇选择氧化的性能。结果表明,与金红石负载的催化剂相比,锐钛负载的钒氧催化剂具有较好的氧化性和酸性,在反应温度为433 K时,甲醇氧化的转化率较为接近,但产物中甲醛和甲酸甲酯的总选择性为63%,高于金红石负载催化剂上的54%。硫酸根的引入增加了甲醇转化率和甲缩醛选择性,在金红石负载型催化剂上尤为明显,甲缩醛选择性提高至88%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘经伟
傅玉川
沈俭一
关键词:  锐钛  金红石  钒氧物种  甲醇  氧化    
Abstract: Using separately anatase and rutile TiO2 with similar specific surface areas as supporter,the catalysts supported vanadia and sulfate species are prepared.Their catalytic behaviors for the selective oxidation of methanol are evaluated and compared.It is found that anatase TiO2 supported vanadia catalyst exhibits superior redox and acidity properties than rutile TiO2 supported catalyst.Although these un-doped sulfate catalysts supported by two supporters exhibit a similar conversion of methanol oxidation at 433 K,total selectivity of formaldehyde and methyl formate for the anatase TiO2 based catalyst can reach 63%,higher than the 54% selectivity for rutile TiO2 based catalyst.Addition of sulfate further enhances the conversion of methanol and the selectivity to dimethoxymethane,which is more significant over rutile TiO2 based catalyst that can improve the selectivity of dimethoxymethane to as high as 88%.
Key words:  anatase    rutile    vanadia species    methanol    oxidation
收稿日期:  2018-04-20      修回日期:  2018-06-07           出版日期:  2018-08-20
O643.36  
基金资助: 国家自然科学基金(20673055)
通讯作者:  沈俭一(1956-),男,博士,教授,研究方向为多相催化,通讯联系人,jyshen@nju.edu.cn    E-mail:  jyshen@nju.edu.cn
作者简介:  刘经伟(1978-),男,博士,高级工程师,研究方向为多相催化,liujingw.yzsh@sinopec.com。
引用本文:    
刘经伟, 傅玉川, 沈俭一. 载体TiO2晶型对甲醇选择氧化性能的影响[J]. 现代化工, 2018, 38(8): 112-116.
LIU Jing-wei, FU Yu-Chuan, SHEN Jian-yi. Effect of TiO2 crystalline type on selective oxidation performance of methanol. Modern Chemical Industry, 2018, 38(8): 112-116.
链接本文:  
http://www.xdhg.com.cn/CN/10.16606/j.cnki.issn0253-4320.2018.08.024  或          http://www.xdhg.com.cn/CN/Y2018/V38/I8/112
[1] Roozeboom F,Cordingley P D,Gellings P J.Vanadium oxide monolayer catalysts:The vapor-phase oxidation of methanol[J].Journal of Catalysis,1981,68(2):464-472.
[2] Elmi A S,Tronconi E,Cinzia Cristiani,et al.Mechanism and active sites for methanol oxidation to methyl formate over coprecipitated vanadium-titanium oxide catalysts[J].Industry Engineering Chemical Research,1989,28(4):387-393.
[3] Cavani F,Cortelli C,Frattini A,et al.The characterization of the V species and the identification of the promoting effect of dopants in V/Ti/O catalysts for o-xylene oxidation[J].Catalysis Today,2006,118(3-4):298-306.
[4] Grabowski R,Pietrzyk S,Sloczynski J,et al.Kinetics of the propane oxidative dehydrogenation on vanadia/titania catalysts from steady-state and transient experiments[J].Applied Catalysis A:General,2002,232(1-2):277-288.
[5] Mutin P H,Popa A F,Vioux A,et al.Nonhydrolytic vanadia-titania xerogels:Synthesis,characterization,and behavior in the selective catalytic reduction of NO by NH3[J].Applied Catalysis B:Environmental,2006,69(1-2):49-57.
[6] Forzatti P,Tronconi E,Elmi A S,et al.Methanol oxidation over vanadia-based catalysts[J].Applied Catalysis A:General,1997,157(1-2):387-408.
[7] Busca G,Elmi A S,Forzatti P.Mechanism of selective methanol oxidation over vanadium oxide-titanium oxide catalysts:A FT-IR and flow reactor study[J].Journal of Physical Chemistry,1987,91(20):5263-5269.
[8] Liu J,Fu Y,Sun Q,et al.TiO2 nanotubes supported V2O5 for the selective oxidation of methanol to dimethoxymethane[J].Microporous and Mesoporous Materials,2008,116(1-3):614-621.
[9] Cortes-Jacome M A,Chavez C A,Ramirez-Verduzco L F,et al.WO<em>x/TiO2 catalysts via titania nanotubes for the oxidation of dibenzothiophene[J].Chemistry of Materials,2007,19(26):6605-6614.
[10] Lin C H,Le C H,Chao J H,et al.Photocatalytic generation of H2 gas from neat ethanol over Pt/TiO2 nanotube catalysts[J].Catalysis Letters,2004,98(1):61-66.
[11] Vejux A,Courtine P.Interfacial reactions between V2O5 and TiO2(anatase):Role of the structural properties[J].Journal of Solid State Chemistry,1978,23(1-2):93-103.
[12] Cai Y,Ozkan U S.Vanadia/titania catalysts in selective catalytic reduction of nitric oxide with ammonia[J].Applied Catalysis,1991,78(2):241-255.
[13] Chary K V R,Kishan G,Lakshmi K,et al.Studies on dispersion and reactivity of vanadium oxide catalysts supported on titania[J].Langmuir,2000,16(18):7192-7199.
[14] Tatibouet J M.Methanol oxidation as a catalytic surface probe[J].Applied Catalysis A:General,1997,148(2):213-252.
[15] 张惠良,张琦,沈俭一,等.一种纳米金红石型二氧化钛的制法:中国,159753.4[P].2004-07-19.
[16] Dunn J P,Jehng J M,Kim D S,et al.Interactions between surface vanadate and surface sulfate species on metal oxide catalysts[J].Journal of Physical Chemistry B,1998,102(32):6212-6218.
[17] Banares M A,Alemany L J,Jimenez M C,et al.The role of vanadium oxide on the titania transformation under thermal treatments and surface vanadium states[J].Journal of Solid State Chemistry,1996,124(1):69-76.
[18] Reddy B M,Khan A,Yamada Y,et al.Structural characterization of CeO2-TiO2 and V2O5/CeO2-TiO2 catalysts by raman and XPS techniques[J].Journal of Physical Chemistry B,2003,107(22):5162-5167.
[19] Amin S S,Nicholls A W,Xu TT.A facile approach to synthesize single-crystalline rutile TiO2 one-dimensional nanostructures[J].Nanotechnology,2007,18(43):445609-445610.
[20] Mohamed M M,Bayoumy W A,Khairy M,et al.Synthesis and structural characterization of TiO2 and V2O5/TiO2 nanoparticles assembled by the anionic surfactant sodium dodecyl sulfate[J].Microporous and Mesoporous Materials,2006,97(1-3):66-77.
[21] Oliveri G,Ramis G,Busca G,et al.Thermal stability of vanadia-titania catalysts[J].Journal of Materials Chemistry,1993,3(12):1239-1249.
[22] Kustov A L,Kustova M Y,Fehrmann R,et al.Vanadia on sulphated-ZrO2,a promising catalyst for NO abatement with ammonia in alkali containing flue gases[J].Applied Catalysis B:Environmental,2005,58(1-2):97-104.
[23] Besselmann S,Freitag C,Hinrichsen O,et al.Temperature-programmed reduction and oxidation experiments with V2O5/TiO2 catalysts[J].Physical Chemistry Chemical Physics,2001,3(21):4633-4638.
[24] Poelman H,Sels B F,Olea M,et al.New supported vanadia catalysts for oxidation reactions prepared by sputter deposition[J].Journal of Catalysis,2007,245(1):156-172.
[25] Desmartin-Chomel A,Flores J L,Bourane A,et al.Calorimetric and FT-IR study of the acid properties of sulfated titanias[J].Journal of Physical Chemistry B,2006,110(2):858-863.
[26] Kulkarni D,Wachs I E.Isopropanol oxidation by pure metal oxide catalysts:Number of active surface sites and turnover frequencies[J].Applied Catalysis A:General,2002,237(1-2):121-137.
[27] Ge J,Xue M,Sun Q,et al.Surface acidic and redox properties of V-Zr-O catalysts for the selective oxidation of toluene to benzaldehyde[J].Journal of Molecular Catalysis A:Chemical,2007,278(1-2):209-214.
[1] 宋晓玲, 李国华, 黄迪, 朱萌萌, 张雪明. 超临界CO2制备h-BN纳米片及其负载钴催化性能研究[J]. 现代化工, 2018, 38(9): 164-167.
[2] 冯耀华, 李春雷, 艾灵. 锂离子电池正极材料LiNi0.8Co0.1Mn0.1O2的产业化工艺研究[J]. 现代化工, 2018, 38(9): 174-179.
[3] 张鑫, 王永波, 王林昕, 刘恩周, 胡晓云, 樊君. 氧化石墨烯载药体系负载甲硝唑及体外释放的研究[J]. 现代化工, 2018, 38(9): 127-131.
[4] 刘婷婷, 乔建江. 复合氢氧化铝-季戊四醇的制备及其应用研究[J]. 现代化工, 2018, 38(9): 155-159.
[5] 张帅, 叶芳芳, 谢文玉, 温福. 稠油加工污水中氮污染来源及处理技术研究进展[J]. 现代化工, 2018, 38(9): 40-44.
[6] 黄振, 邓征兵, 陈德珍, 何方, 李海滨. 基于NiFe2O4载氧体的化学链蒸汽重整制氢实验研究[J]. 现代化工, 2018, 38(9): 90-95.
[7] 王晨璐, 龚本涛, 沈峥, 付阳, 张亚雷. 铁炭微电解法去除青霉素类抗生素的研究[J]. 现代化工, 2018, 38(9): 100-104.
[8] 刘杰, 孙美婷, 李玲. 一种液化分离二氧化碳净化工艺[J]. 现代化工, 2018, 38(8): 206-208.
[9] 宋利军. 甲醇作为车用汽油调合组分的利弊分析[J]. 现代化工, 2018, 38(8): 12-16.
[10] 贺凯, 柏明星, 胡晓宇, 高硕. CO2抽取干热岩地热强化采油技术[J]. 现代化工, 2018, 38(7): 6-9.
[11] 黄镇, 夏玥穜, 温朗友, 郜亮, 宗保宁, 罗一斌. N-羟基邻苯二甲酰亚胺非均相催化剂的研究进展[J]. 现代化工, 2018, 38(7): 16-20.
[12] 赵文莉, 王广智, 弋凡, 朱天琳. 过硫酸盐活化技术的研究进展[J]. 现代化工, 2018, 38(7): 53-56.
[13] 郭斌, 王红红, 边永欢, 张轩. 蓄热式氧化器处理挥发性有机物的数值模拟技术及应用进展[J]. 现代化工, 2018, 38(7): 44-47,49.
[14] 代岩, 王硕, 田黎明, 肖武. FePc-TiO2/CS复合材料制备及光催化降解染料废水[J]. 现代化工, 2018, 38(7): 89-92.
[15] 刘佳, 隋铭皓, 盛力. Mn-MCM-41介孔分子筛的制备、表征及催化性能研究[J]. 现代化工, 2018, 38(7): 93-97.
[1] . [J]. Modern Chemical Industry, 2015, 35(11): 77 -80 .
[2] . [J]. Modern Chemical Industry, 2015, 35(12): 128 -130,132 .
[3] . [J]. Modern Chemical Industry, 2017, 37(6): 103 -0106,108 .
[4] . [J]. , 2003, 23(5): 0 .
[5] . [J]. , 2009, 29(6): 0 .
[6] . [J]. , 2010, 30(3): 0 .
[7] . [J]. , 2010, 30(7): 0 .
[8] . [J]. , 2007, 27(2): 0 .
[9] . [J]. Modern Chemical Industry, 2014, 34(2): 131 -133 .
[10] . [J]. Modern Chemical Industry, 2014, 34(4): 14 -16 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备09035943号-37
版权所有 © 《现代化工》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn