Please wait a minute...
 
最新公告: 关于寒假期间版面费发票延迟邮寄的通知    
现代化工  2018, Vol. 38 Issue (8): 58-62    DOI: 10.16606/j.cnki.issn0253-4320.2018.08.012
  技术进展 本期目录 | 过刊浏览 | 高级检索 |
基于C1化学的低碳烯烃合成技术研究进展
任健1,2, 李大鹏1,2, 王宁波1,2, 王永娟1,2, 姚晓虹1,2, 王维1,2, 杨帆1,2, 党昱1,2
1. 石油和化工行业化石碳氢资源高效利用工程研究中心, 陕西 西安 710000;
2. 陕西延长石油(集团)有限责任公司碳氢高效利用技术研究中心, 陕西 西安 710000
Advances in synthesis technologies of low-carbon olefins based C1 chemistry
REN Jian1,2, LI Da-peng1,2, WANG Ning-bo1,2, WANG Yong-juan1,2, YAO Xiao-hong1,2, WANG Wei1,2, YANG Fan1,2, DANG Yu1,2
1. Engineering Research Center for High-efficiency Utilization of Fossil Hydrocarbon Resource of Petroleum and Chemical Industry, Xi'an 710000, China;
2. Hydrocarbon High-efficiency Utilization Technology Research Center, Shaanxi Yanchang Petroleum(Group) Corp., Ltd., Xi'an 710000, China
下载:  PDF (1405KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 介绍了基于C1化学的低碳烯烃合成反应机理研究进展。常规FTO路线的合成气直接转化制取低碳烯烃工艺产物组成受ASF分布规律限制,副产物CH4、饱和烷烃选择性高,目标产物C=2~C=4选择性很难突破58%。基于MTO催化机理的核壳型FeMnK@SAPO-34双功能催化剂,CO最高转化率可达92.4%,总低碳烃(C2~C4低碳烃)选择性高达69.2%,C=2~C=4低碳烯烃选择性最高值达46.6%,CH4选择性最低值仅为10.5%,CO2选择性最低仅为16.8%;基于乙烯酮中间体机理的OX-ZEO双功能催化剂在400℃、2.5 MPa、H2/CO=2.0的反应条件下,可实现C2~C4低碳烃类总选择性94%、C=2~C=4低碳烯烃选择性80%,且CH4选择性可进一步降低至2%。此外,CH4高温分解、CH4氧化偶联、CH4无氧转化、CO2加氢等技术,也为低碳烯烃的合成开辟了新的技术路线。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
任健
李大鹏
王宁波
王永娟
姚晓虹
王维
杨帆
党昱
关键词:  C1化学  FTO  ASF分布  低碳烯烃  双功能催化剂    
Abstract: The research advances in the reaction mechanism for synthesizing low-carbon olefins via C1 chemistry is stated.As determined by the ASF distribution law,the low-carbon olefins produced from syngas via conventional FTO pathway exhibit deficiencies such as high selectivity of by-products CH4 and saturated alkanes,and in particular,the selectivity of targeting products C=2,C=3 and C=4 hardly exceeding 58%.However,FeMnK@SAMPO-34,a core-shell type bi-functional catalyst in term of MTO mechanism,can help the maximum conversion rate of CO,the maximum selectivity of total low-carbon hydrocarbons (C2-C4),the maximum selectivity of low-carbon light olefins (C=2-C=4),the minimum CH4 selectivity and the minimum CO2 selectivity to reach 92.4%,69.2%,46.6%,10.5% and 16.8%,respectively.In addition,the overall selectivity of low-carbon hydrocarbons (C2-C4) and the selectivity of low-carbon light olefins (C=2-C=4) can be up to 94% and 80%,respectively,and the CH4 selectivity can be reduced to 2% through the direct conversion of syngas (CO+H2) over OX-ZEO bi-functional catalyst based on the ketene intermediate mechanism,with the experimental conditions of temperature 400℃,pressure 2.5 MPa and H2/CO=2.0.Moreover,the high temperature pyrolysis,oxidative coupling and oxygen-free conversion of CH4 as well as hydrogenation of CO2 provide alternative pathways for low-carbon olefins production.
Key words:  C1 chemistry    FTO    ASF distribution    low-carbon olefins    bi-functional catalyst
收稿日期:  2018-03-20      修回日期:  2018-06-03           出版日期:  2018-08-20
TQ53  
基金资助: 陕西省科技统筹创新工程计划(重点产业创新链)项目(2015KTZDGY05-01)
通讯作者:  任健(1984-),男,工程师,研究方向为能源化工技术研发、化学反应工程、传递过程强化工程,通讯联系人,qfeng456@126.com。    E-mail:  qfeng456@126.com
引用本文:    
任健, 李大鹏, 王宁波, 王永娟, 姚晓虹, 王维, 杨帆, 党昱. 基于C1化学的低碳烯烃合成技术研究进展[J]. 现代化工, 2018, 38(8): 58-62.
REN Jian, LI Da-peng, WANG Ning-bo, WANG Yong-juan, YAO Xiao-hong, WANG Wei, YANG Fan, DANG Yu. Advances in synthesis technologies of low-carbon olefins based C1 chemistry. Modern Chemical Industry, 2018, 38(8): 58-62.
链接本文:  
http://www.xdhg.com.cn/CN/10.16606/j.cnki.issn0253-4320.2018.08.012  或          http://www.xdhg.com.cn/CN/Y2018/V38/I8/58
[1] Torres Galvis H M,de Jong K P.Catalysts for production of lower olefins from synthesis gas:A review[J].ACS Catalysis,2013,9(3):2130-2149.
[2] 夏航,杨霞珍,霍超,等.合成气一步制取低碳烯烃铁基催化剂的研究进展[J].现代化工,2016,36(8):19-23.
[3] 张世杰,吴秀章,刘勇,等.甲醇制烯烃工艺及工业化最新进展[J].现代化工,2017,37(8):1-6.
[4] Tian P,Wei Y,Liu Z M.Methanol to olefins(MTO):From fundamentals to commercialization[J].ACS Catal,2015,5(3):1922-1938.
[5] 刘弓,张亚秦,王邓军.甲醇制烯烃技术产业化进展[J].洁净煤技术,2016,22(5):100-107.
[6] 蔡光宇,刘中民,石仁敏,等.合成气经由二甲醚制取低碳烯烃[J].天然气化工:C1化学与化工,1994,8(5):26-30.
[7] Sage V,Burke N.Use of probe molecules for Fischer-Tropsch mechanistic investigations:A short review[J].Catalysis Today,2011,178(1):137-141.
[8] Zheng S K,Sun J Q,Song D C,et al.The facile fabrication of magnetite nanopaiticles for the enhanced catalytic performance in Fischer-Tropsch synthesis[J].Chemical Communications,2015,51(55):11123-11125.
[9] Cheng Y,Lin J,Wu T J,et al.Mg and K encorated Fe-on-reduced grapheme oxide for selective catalyzing CO hydrogenation to light olefins with mitigated CO2 emission and enhanced activity[J].Applied Catalysis B:Environmental,2017,5(204):475-485.
[10] Jiao F,Pan X L,Bao X H,et al.Selective conversion of syngas to light olefins[J].Science,2016,351(6277):1065-1068.
[11] Jiao F,Pan X L,Bao X H,et al.Shape-selective zeolites promote ethylene formation from syngas via a ketene intermediate[J].Angew Chem Int Ed,2018,130(17):4692-4696.
[12] Martin Oschatz,Wouter Lamme,Xie J X,et al.Ordered mesoporous materials as supports for stable iron catalysts in the Fischer-tropsch synthesis of lower olefins[J].Chem Cat Chem,2016,8(17):2846-2852.
[13] Cheng K,Gu B,Wang Y,et al.Direct and highly selective conversion of synthesis gas into lower olefins:Design of a bifunctional catalyst combining methanol synthesis and carbon-carbon coupling[J].Angewandtechemie International Edition,2016,55(15):4725-4728.
[14] Zhong L S,Yu F,Wang H,et al.Cobalt carbide nanoprisms for direct production of lower olefins from syngas[J].Nature,2016,538(7623):84-87.
[15] 屈叶青,唐鹏武,陈健.甲烷制低碳烯烃技术简析[J].石油化工技术与经济,2017,33(4):52-56.
[16] 张志翔,王凤荣,苑慧敏,等.甲烷氧化偶联反应制乙烯的研究进展[J].现代化工,2007,27(3):20-25.
[17] Guo X G,Fang G Z,Li G,et al.Direct,non-oxidative conversion of methane to ethylene,aromatics,and hydrogen[J].Science,2014,344(6184):616-619.
[18] Li Z L,Wang J,Li C,et al.Highly selective conversion of carbon dioxide to lower olefins[J].ACS Catal,2017,15(7):8544-8548.
[1] 叶帅, 宁英辉, 袁春亮. 甲醇制烯烃(MTO)反再两器汽提段汽提效果的分析[J]. 现代化工, 2017, 37(7): 171-174.
[2] 夏航, 杨霞珍, 霍超, 刘化章. 合成气一步制取低碳烯烃铁基催化剂的研究进展[J]. 现代化工, 2016, 36(8): 19-23.
[3] 蒋章, 沈本贤, 赵基钢, 孔令涛. SAPO-34分子筛催化氯甲烷制取低碳烯烃及再生性能考察[J]. 现代化工, 2016, 36(3): 133-136,138.
[4] 孔令涛, 沈本贤, 蒋章. 两步晶化法合成SAPO-34分子筛及其催化氯甲烷制低碳烯烃研究[J]. 现代化工, 2015, 35(7): 73-77.
[5] 张作军, 田来进, 徐国强, 牟新. 双功能催化剂镁铝固体碱负载钯的制备及应用研究[J]. 现代化工, 2015, 35(5): 101-104.
[6] 邢爱华. 固定流化床评价MTO工业试应用催化剂性能[J]. 现代化工, 2015, 35(3): 131-134.
[7] 向航, 李静, 曹建新, 杨林. CO2绿色化合成低碳烯烃Fe基催化剂研究进展[J]. 现代化工, 2015, 35(2): 27-31,33.
[8] 吴永涛,杨光福,王刚,徐春明,申宝剑,高金森. 反应温度对汽油催化裂解多产低碳烯烃的影响[J]. , 2009, 29(1): 0-0.
[9] 齐国祯 谢在库 钟思青 张成芳 陈庆龄. 煤或天然气经甲醇制低碳烯烃工艺研究新进展[J]. , 2005, 25(2): 0-0.
[1] . [J]. Modern Chemical Industry, 2015, 35(11): 77 -80 .
[2] . [J]. Modern Chemical Industry, 2015, 35(12): 128 -130,132 .
[3] . [J]. Modern Chemical Industry, 2017, 37(6): 103 -0106,108 .
[4] . [J]. , 2003, 23(5): 0 .
[5] . [J]. , 2009, 29(6): 0 .
[6] . [J]. , 2010, 30(3): 0 .
[7] . [J]. , 2010, 30(7): 0 .
[8] . [J]. , 2007, 27(2): 0 .
[9] . [J]. Modern Chemical Industry, 2014, 34(2): 131 -133 .
[10] . [J]. Modern Chemical Industry, 2014, 34(4): 14 -16 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备09035943号-37
版权所有 © 《现代化工》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn