Please wait a minute...
 
最新公告: 关于寒假期间版面费发票延迟邮寄的通知    
现代化工  2018, Vol. 38 Issue (8): 17-22    DOI: 10.16606/j.cnki.issn0253-4320.2018.08.004
  技术进展 本期目录 | 过刊浏览 | 高级检索 |
三维石墨烯基光催化剂的研究进展
蔡亭伟, 丁颖, 徐丽慧
上海工程技术大学服装学院, 上海 201620
Research progress in 3D graphene based photocatalysts
CAI Ting-wei, DING Ying, XU Li-hui
Fashion College, Shanghai University of Engineering Science, Shanghai 201620, China
下载:  PDF (3064KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 从三维石墨烯基光催化剂的制备、3D GBP的分类以及基本作用等方面对三维石墨烯基光催化剂进行综述,分析了三维石墨烯促进所负载催化剂电子-空穴高效分离、光吸收范围变宽以及污染物吸附性能提高的原理。此外,还综述了化学掺杂N和B原子石墨烯基底对三维石墨烯基光催化剂(3D GBP)催化性能的重要影响。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
蔡亭伟
丁颖
徐丽慧
关键词:  三维石墨烯基底  三维石墨烯基光催化剂  电子-空穴对  光催化降解    
Abstract: The 3D graphene based photocatalysts (GBP) are overviewed from three aspects of preparation,classification and basic function.The principles for 3D graphene helping its supported catalysts to separate electron-hole efficiently,widen the light absorption range and improve adsorption against pollutants are analyzed.In addition,the important influences of the graphene substrate with chemically-doped N and B atoms on the catalytic performance of 3D GBP are overviewed.
Key words:  3D graphene substrate    3D graphene based photocatalysts    electron-hole pairs    photocatalytic degradation
收稿日期:  2018-04-25      修回日期:  2018-06-07           出版日期:  2018-08-20
O613.71  
基金资助: 国家自然科学基金项目(51703123)
通讯作者:  丁颖(1964-),男,博士,副教授,研究方向为石墨烯的功能化改性及在纺织品功能整理上的应用,通讯联系人,021-67874104,tingying@sues.edu.cn    E-mail:  tingying@sues.edu.cn
作者简介:  蔡亭伟(1993-),女,硕士生。
引用本文:    
蔡亭伟, 丁颖, 徐丽慧. 三维石墨烯基光催化剂的研究进展[J]. 现代化工, 2018, 38(8): 17-22.
CAI Ting-wei, DING Ying, XU Li-hui. Research progress in 3D graphene based photocatalysts. Modern Chemical Industry, 2018, 38(8): 17-22.
链接本文:  
http://www.xdhg.com.cn/CN/10.16606/j.cnki.issn0253-4320.2018.08.004  或          http://www.xdhg.com.cn/CN/Y2018/V38/I8/17
[1] An Xiaoqiang,Yu Jimmy.Graphene-based photocatalytic composites[J].Cheminform,2012,43(3):1426-1434.
[2] Li Chun,Shi Gaojuan.Functional gels based on chemically modified graphenes[J].Advanced Materials,2014,26(24):3992-4012.
[3] Cheng Chi,Li Dan.Solvated graphenes:An emerging class of functional soft materials[J].Advanced Materials,2013,25(1):13-30.
[4] Nardecchia Stefania,Carriazo Daniel,Ferrer Luisa,et al.Three dimensional macroporous architectures and aerogels built of carbon nanotubes and/or graphene:Synthesis and applications[J].Chemical Society Reviews,2013,42(2):794-830.
[5] Tao Ying,Kong Debin,Zhang Chen,et al.Monolithic carbons with spheroidal and hierarchical pores produced by the linkage of functionalized graphene sheets[J].Carbon,2014,69(2):169-177.
[6] Shen Yi,Fang Qile,Chen Baoliang.Environmental applications of three-dimensional graphene-based macrostructures:Adsorption,transformation,and detection[J].Environmental Science & Technology,2015,49(1):67-84.
[7] Xu Yuxi,Sheng Kaixuan,Li Chun,et al.Self-assembled graphene hydrogel via a one-step hydrothermal process[J].Acs Nano,2010,4(7):4324-4330.
[8] Xu Yuxi,Wu Qiong,Sun Yiqing,et al.Three-dimensional self-assembly of graphene oxide and DNA into multifunctional hydrogels[J].Acs Nano,2010,4(12):7358-7362.
[9] Chen Zongping,Ren Wencai,Gao Libo,et al.Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition[J].Nature Materials,2011,10(6):424-428.
[10] Yang Minquan,Zhang Nan,Pagiaro Mario,et al.Artificial photosynthesis over graphene-semiconductor composites.Are we getting better[J].Chemical Society Reviews,2014,43(24):8240-8254.
[11] Zhang Nan,Zhang Yanhui,Pan Xiaoyang,et al.Assembly of CdS nanoparticles on the two-dimensional graphene scaffold as visible-light-driven photocatalyst for selective organic transformation under ambient conditions[J].Journal of Physical Chemistry C,2011,116(6):4347-4347.
[12] Ravi Kant Upadhyay,Navneet Soinb,Susanta Sinha Roy.Role of graphene/metal oxide composites as photocatalysts,adsorbents and disinfectants in water treatment[J].RSC Advances,2014,45(25):3823-3851.
[13] Sanchez Vanesa C,Jack Ashish,Hurt Robert H,et al.Biological interactions of graphene-family nanomaterials[J].Chemical Research in Toxicology,2012,25(1):15-34.
[14] Cheng Chong Sage,Deng Jie,Lei Bei,et al.Toward 3D graphene oxide gels-based adsorbents for high efficient water treatment via the promotion of biopolymers[J].Hazard Materials,2013,263:467-478.
[15] Pan Dengyu,Chen Xi,Li Zhen,et al.Electrophoretic fabrication of highly robust,efficient,and benign heterojunction photoelectrocatalysts based on graphene-quantum-dot sensitized TiO2 nanotube arrays[J].Journal of Materials Chemistry A,2013,1(11):3551-3555.
[16] Han Jongwoo,Zhang Lili,Seung Junlee.Generation of B-doped graphene nanoplatelets using a solution process and their supercapacitor applications[J].ACS Nano,2013,7(1):19-26.
[17] Zhang Hao,Lv Xiaojun,Li Yueming,et al.P25-graphene composite as a high performance photocatalyst[J].ACS Nano,2010,4(1):380-386.
[18] 黄剑坤,刘会娥,黄扬帆,等.石墨烯气凝胶的制备及其对水中油分的吸附特性[J].化工学报,2016,67(12):5048-5056.
[19] Tang Zhihong,Shen Shuling,Zhuang Jing,et al.Noble-metal-promoted three-dimensional macro assembly of single-layered graphene oxide[J].Angewandte Chemie International Edition,2010,49(27):4603-4607.
[20] Yuan Ming,Liu Aiping,Zhao Ming,et al.Bimetallic PdCu nanoparticle decorated three-dimensional graphene hydrogel for non-enzymatic amperometric glucose sensor[J].Sensors & Actuators B Chemical,2014,190(1):707-714.
[21] Si Peng,Dong Xiaochen,Chen Peng,et al.A hierarchically structured composite of Mn3O4/3D graphene foam for flexible nonenzymatic biosensors[J].Journal of Materials Chemistry B,2012,1(1):110-115.
[22] Shao Yuanlong,Wang Hongzhi,Zhang Qinghong,et al.High-performance flexible asymmetric supercapacitors based on 3D porous graphene/MnO2 nanorod and graphene/Ag hybrid thin-film electrodes[J].Journal of Materials Chemistry C,2013,1(6):1245-1251.
[23] Yin Huajie,Zhao Shenlong,Wan Jiawei,et al.Three-dimensional graphene/metal oxide nanoparticle hybrids for high-performance capacitive deionization of saline water[J].Advanced Materials,2013,25(43):6270-6276.
[24] Han Weijia,Ren Long,Gong Lunjun,et al.Self-assembled three-dimensional graphene-based aerogel with embedded multifarious functional nanoparticles and its excellent photoelectrochemical activities[J].Acs Sustainable Chemistry & Engineering,2014,2(4):741-748.
[25] Banhart Florian,Kotakoski Jani,Krasheninnik Arkady V.Structural defects in graphene[J].ACS Nano,2011,5(1):26-41.
[26] Behabtu Natnael,Lomeda Jay R,Green Micah J,et al.Spontaneous high-concentration dispersions and liquid crystals of graphene[J].Nature Nanotechnology,2010,5(6):406-411.
[27] Liang Yuteng,Vijayan Baiju K,Gray Kimberly A,et al.Minimizing graphene defects enhances titania nanocomposite-based photocatalytic reduction of CO2 for improved solar fuel production[J].Nano Lett,2011,11(7):2865-2870.
[28] Mi Qian,Chen Daiquan,Hu Juncheng,et al.Nitrogen-doped graphene/CdS hollow spheres nanocomposite with enhanced photocatalytic performance[J].Chinese Journal of Catalysis,2013,34(11):2138-2145.
[29] Xing Mingyang,Fang Wenzhang,Yang Xiaolong,et al.Highly-dispersed boron-doped graphene nanoribbons with enhanced conductibility and photocatalysis[J].Chemical Communications,2014,50(50):6637-6640.
[1] 张萍花, 李梦婷, 陈建钧, 王红艳, 史洪伟, 燕云洁, 姜桃. 银负载石墨烯复合材料的制备及光催化性能研究[J]. 现代化工, 2018, 38(9): 81-84,86.
[2] 牛凤兴, 陈晨, 陈钰, 高晓明. 水热法制备Co/ZnO及其光催化降解邻苯二酚的研究[J]. 现代化工, 2018, 38(8): 99-102,104.
[1] . [J]. Modern Chemical Industry, 2015, 35(11): 77 -80 .
[2] . [J]. Modern Chemical Industry, 2015, 35(12): 128 -130,132 .
[3] . [J]. Modern Chemical Industry, 2017, 37(6): 103 -0106,108 .
[4] . [J]. , 2003, 23(5): 0 .
[5] . [J]. , 2009, 29(6): 0 .
[6] . [J]. , 2010, 30(3): 0 .
[7] . [J]. , 2010, 30(7): 0 .
[8] . [J]. , 2007, 27(2): 0 .
[9] . [J]. Modern Chemical Industry, 2014, 34(2): 131 -133 .
[10] . [J]. Modern Chemical Industry, 2014, 34(4): 14 -16 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备09035943号-37
版权所有 © 《现代化工》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn