Please wait a minute...
 
最新公告: 2018年3月网站服务时间变更通知   春节放假通知   关于寒假期间版面费发票延迟邮寄的通知    
现代化工  2018, Vol. 38 Issue (8): 1-7    DOI: 10.16606/j.cnki.issn0253-4320.2018.08.001
  专论与评述 本期目录 | 过刊浏览 | 高级检索 |
炼化企业碳流动与隐含碳排放分析
吴明1, 李雪1, 贾冯睿1, 刘广鑫1, 岳强2, 王鹤鸣2
1. 辽宁石油化工大学石油天然气工程学院, 辽宁 抚顺 113001;
2. 东北大学冶金学院, 辽宁 沈阳 110819
Analysis on carbon flow and hidden carbon emissions in refining companies
WU Ming1, LI Xue1, JIA Feng-rui1, LIU Guang-xin1, YUE Qiang2, WANG He-ming2
1. College of Petroleum Engineering, Liaoning Shihua University, Fushun 113001, China;
2. School of Metallurgy, Northeastern University, Shenyang 110819, China
下载:  PDF (2825KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 炼化企业是传统的能源和排放密集型行业,其低碳化发展对我国节能减排具有重要的意义。以物质流分析方法为基础,建立了企业内部碳流动分析模型。以国内某1 000万t/a大型炼化企业为例,分析了该企业2015年碳流动规律并计算了隐含碳排放量,预测了3种情景下该企业2016—2035年间的CO2减排趋势。结果表明,每加工1 t原油会产生82 kg的隐含碳排放;二次加工是隐含碳排放量最大的环节,约占总量的75.1%,其中,延迟焦化装置是隐含碳排放的主要工序,约占总量的42.8%;到2035年,3种情景下相对2015年可分别减少隐含碳排放11.7%、14.9%和19.6%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴明
李雪
贾冯睿
刘广鑫
岳强
王鹤鸣
关键词:  炼化企业  碳流动  隐含碳排放  物质流分析    
Abstract: The refining industry is a traditional energy and emissions intensive industry.The low-carbon development of refining industry is of great significance for energy-saving and emission reduction in China.An intra-enterprise carbon flow analysis model is established based on material flow analysis (MFA) method.Taking a 10 million t/a refinery in China as an example,the carbon flow rule and the hidden carbon emissions for the refinery in 2015 are analyzed and calculated respectively.Furthermore,the trends of CO2 emissions reduction in this refinery during the period of 2016-2035 are predicted under three scenarios.It is found that 82 kg of hidden carbon emissions will be generated when one ton of crude oil is processed.Secondary processing section is the largest part of the hidden carbon emissions,accounting for about 75.1% of the total emissions.Among them,the delayed coking unit is the main process for implying carbon emissions,accounting for about 42.8% of the total hidden carbon emissions.Compared with levels in 2015,the hidden carbon emissions by 2035 can be reduces by 11.7%,14.9% and 19.6%,respectively under these three scenarios.
Key words:  refining enterprise    carbon flow    hidden carbon emissions    material flow analysis
收稿日期:  2018-01-14      修回日期:  2018-06-09           出版日期:  2018-08-20
TE624  
基金资助: 国家自然科学基金项目(71373003);辽宁省教育厅高等学校科学研究一般项目(L2014146)
通讯作者:  贾冯睿(1983-),男,博士,副教授,硕士生导师,研究方向为炼化企业节能减排,通讯联系人,13841314860,13841314860@163.com    E-mail:  13841314860@163.com
作者简介:  吴明(1961-),男,博士,教授,研究方向为炼化企业节能减排,18641394778,lnpu2015@163.com。
引用本文:    
吴明, 李雪, 贾冯睿, 刘广鑫, 岳强, 王鹤鸣. 炼化企业碳流动与隐含碳排放分析[J]. 现代化工, 2018, 38(8): 1-7.
WU Ming, LI Xue, JIA Feng-rui, LIU Guang-xin, YUE Qiang, WANG He-ming. Analysis on carbon flow and hidden carbon emissions in refining companies. Modern Chemical Industry, 2018, 38(8): 1-7.
链接本文:  
http://www.xdhg.com.cn/CN/10.16606/j.cnki.issn0253-4320.2018.08.001  或          http://www.xdhg.com.cn/CN/Y2018/V38/I8/1
[1] Lin B,Long H.Input substitution effect in China's chemical industry:Evidences and policy implications[J].Renewable & Sustainable Energy Reviews,2016,53:1617-1625.
[2] Herva M,Alvarez A,Roca E.Combined application of energy and material flow analysis and ecological footprint for the environmental evaluation of a tailoring factory[J].Journal of Hazardous Materials,2012,237-238:231-239.
[3] 中华人民共和国国家统计局.中国统计年鉴2016[M].北京:中国统计出版社,2016.
[4] BP.Statistical review of world energy[M].British Petroleum,2017.
[5] Ohnishi S,Dong H,Geng Y,et al.A comprehensive evaluation on industrial & urban symbiosis by combining MFA,carbon footprint and emergy methods——Case of Kawasaki,Japan[J].Ecological Indicators,2017,73:513-524.
[6] Lederer J,Karungi J,Ogwang F.The potential of wastes to improve nutrient levels in agricultural soils:A material flow analysis case study from Busia District,Uganda[J].Agriculture Ecosystems & Environment,2015,207:26-39.
[7] Espinoza V S,Erbis S,Pourzahedi L,et al.Material flow analysis of carbon nanotube lithium-ion batteries used in portable computers[J].Acs Sustainable Chemistry & Engineering,2014,2(7):1642-1648.
[8] 马丹竹,贾冯睿,方弘,等.炼油厂碳排放特征及催化裂化装置CO2减排研究[J].现代化工,2016,36(5):138-141.
[9] Granadoshernandez E,Bravoalvarez H,Sosaecheverria R,et al.Energy consumption and carbon dioxide emissions from petroleum refining sector in mexico from 2015 to 2030[J].Ingeniería Investigacióny Tecnología,2015,16(4):503-513.
[10] 中华人民共和国国家发展和改革委员会.中国石油化工企业温室气体排放核算方法与报告指南(试行)[M].2015.
[11] Shen H,Liu S.Estimation of shadow price of oil-refinery's CO2 emission in China:A study on china petroleum & chemical corporation[J].Journal of Convergence Information Technology,2012,7(19):269-277.
[12] 侯芙生.中国炼油技术[M].3版.北京:中国石化出版社,2011.
[1] 戴铁军, 安佰超, 王婉君. 京津冀资源环境经济协调发展的演化研究[J]. 现代化工, 2018, 38(7): 10-15.
[2] 戴铁军, 王婉君. 基于物质流核算的我国直接物质投入与影响因素分析[J]. 现代化工, 2017, 37(9): 5-11.
[3] 周敏, 张耀亨, 刘双明. 炼化企业物联网建设方案探讨[J]. 现代化工, 2014, 34(2): 9-13.
[4] 马敦超,胡山鹰,陈定江,李有润. 1980—2008年中国磷资源代谢的分析研究[J]. , 2011, 31(9): 0-0.
[5] 马敬昆,蒋庆哲,宋昭峥,柯明. 低碳经济视角下炼厂碳产业链的构建[J]. , 2011, 31(6): 0-0.
[6] 杨友麒. 企业公用工程系统节能减排的发展现状[J]. , 2010, 30(12): 0-0.
[7] 毛玉如,沈鹏,李艳萍,孙启宏. 基于物质流分析的低碳经济发展战略研究[J]. , 2008, 28(11): 0-0.
[8] 刘征 胡山鹰 陈定江 沈静珠 李有润. 我国磷资源产业物质流分析[J]. , 2005, 25(6): 0-0.
[1] . [J]. Modern Chemical Industry, 2015, 35(11): 77 -80 .
[2] . [J]. Modern Chemical Industry, 2015, 35(12): 128 -130,132 .
[3] . [J]. Modern Chemical Industry, 2017, 37(6): 103 -0106,108 .
[4] . [J]. , 2003, 23(5): 0 .
[5] . [J]. , 2009, 29(6): 0 .
[6] . [J]. , 2010, 30(3): 0 .
[7] . [J]. , 2010, 30(7): 0 .
[8] . [J]. , 2007, 27(2): 0 .
[9] . [J]. Modern Chemical Industry, 2014, 34(2): 131 -133 .
[10] . [J]. Modern Chemical Industry, 2014, 34(4): 14 -16 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《现代化工》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn