Please wait a minute...
 
最新公告: 重要提醒:骗子冒充编辑部要求加作者微信,谨防上当!   关于暑假、寒假期间版面费发票及期刊样刊延迟邮寄的通知    
现代化工  2023, Vol. 43 Issue (2): 173-179    DOI: 10.16606/j.cnki.issn0253-4320.2023.02.033
  科研与开发 本期目录 | 过刊浏览 | 高级检索 |
MoO3-x/SiO2催化剂的制备及其在氧化脱硫中的应用
刘红利1, 单媛媛2, 杜朕屹1
1. 太原理工大学省部共建煤基能源清洁高效利用国家重点实验室, 山西 太原 030024;
2. 太原理工大学材料科学与工程学院, 山西 太原 030024
Preparation of MoO3-x/SiO2 catalysts and application in oxidative desulfurization
LIU Hong-li1, SHAN Yuan-yuan2, DU Zhen-yi1
1. State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan 030024, China;
2. College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
下载:  PDF (2266KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 以钼酸铵为前驱体、亲水性SiO2为载体,采用等体积浸渍法制备了负载型MoO3-x/SiO2系列催化剂。利用X射线衍射(XRD)、拉曼光谱(Raman)、紫外光谱(UV-Vis)、N2吸附-脱附、X射线光电子能谱仪(XPS)和氢气程序升温还原(H2-TPR)等技术手段对催化剂性质进行表征。以乙腈为萃取剂、过氧化氢为氧化剂的氧化脱硫反应中,研究了催化活性与催化剂表面性质的内在规律关系。结果表明,MoO3-x活性组分的团聚是抑制氧化脱硫活性的主要原因,适宜的焙烧温度有利于获得所需活性位点且分散性高的催化剂,可有效对H2O2快速活化,提高DBTs脱硫率。在焙烧温度为350℃、O/S摩尔比为3、反应温度为60℃的最佳脱硫条件下,苯并噻吩(BT)、二苯并噻吩(DBT)和4,6-二甲基二苯并噻吩(4,6-DMDBT)的脱除率分别为77.2%、99.3%、96.4%。该催化体系中DBT的脱除率可达到国家脱硫标准(<10 μg/g)。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘红利
单媛媛
杜朕屹
关键词:  二苯并噻吩  氧化  脱硫  液体燃料  焙烧温度    
Abstract: A series of supported MoO3-x/SiO2 catalysts are prepared via equal volume immersion method by using hydrophilic SiO2 as supporter and ammonium molybdate as precursor.The prepared catalysts are characterized by mean of N2 adsorption-desorption,X-ray diffraction,Raman spectroscopy,UV-Vis spectroscopy,X-ray photoelectron spectroscopy and hydrogen temperature-programmed reduction.In an oxidative desulfurization process using acetonitrile as extractant and H2O2 as oxidant,the intrinsic rule relationship between the catalytic activity and the surface properties of the catalyst is studied.Study results indicate that the agglomeration of MoO3-x active is the main reason to inhibit the oxidative desulfurization activity.A suitable calcination temperature is important to obtain the catalysts with desired active sites,high dispersion for the rapid activation of H2O2 and an improved desulfurization rate.The removal rates of benzothiophene,dibenzothiophene and 4,6-dimethyldibenzothiophene are 77.2%,99.3% and 96.4%,respectively under the conditions that the calcination temperature is 350oC,the optimal O/S ratio is 3 and the optimal reaction temperature is 60℃.Advantageously,the present catalytic system can achieve China's national desulfurization standard (<10 ppm) with respect to benzothiophene.
Key words:  dibenzothiophene    oxidation    desulfurization    liquid fuels    calcination temperature
               出版日期:  2023-02-20
ZTFLH:  TE624  
基金资助: 山西省应用基础研究计划面上青年基金项目(201901D1211098)
通讯作者:  杜朕屹(1987-),男,博士,教授,研究方向为能源化工,通讯联系人,duzhenyi@tyut.edu.cn。    E-mail:  duzhenyi@tyut.edu.cn
作者简介:  刘红利(1996-),女,硕士研究生,研究方向为工业催化,Liuhongli0433@link.tyut.edu.cn。
引用本文:    
刘红利, 单媛媛, 杜朕屹. MoO3-x/SiO2催化剂的制备及其在氧化脱硫中的应用[J]. 现代化工, 2023, 43(2): 173-179.
LIU Hong-li, SHAN Yuan-yuan, DU Zhen-yi. Preparation of MoO3-x/SiO2 catalysts and application in oxidative desulfurization. Modern Chemical Industry, 2023, 43(2): 173-179.
链接本文:  
https://www.xdhg.com.cn/CN/10.16606/j.cnki.issn0253-4320.2023.02.033  或          https://www.xdhg.com.cn/CN/Y2023/V43/I2/173
[1] Rajendran A,Cui T Y,Fan H X,et al.A comprehensive review on oxidative desulfurization catalysts targeting clean energy and environment[J].Journal of Materials Chemistry A,2020,8(5):2246-2285.
[2] Zhang L H,Song S S,Yang N,et al.Porous hybrid nanoflower self-assembled from polyoxometalate and polyionene for efficient oxidative desulfurization[J].Industrial & Engineering Chemistry Research,2019,58(9):3618-3629.
[3] Almashjary K H,Khalid M,Dharaskar S,et al.Optimisation of extractive desulfurization using Choline Chloride-based deep eutectic solvents[J].Fuel,2018,234:1388-1400.
[4] Sha I Q,Shafique S,Akhter P,et al.Recent breakthroughs in deep aerobic oxidative desulfurization of petroleum refinery products[J].Journal of Cleaner Production,2021,294:125731.
[5] Attar A,Corcoran W H.Desulfurization of organic sulfur compounds by selective oxidation.1.regenerable and nonregenerable oxygen carriers[J].Industrial & Engineering Chemistry Research,1978,17:102-109.
[6] Saleh T A.Carbon nanotube-incorporated alumina as a support for MoNi catalysts for the efficient hydrodesulfurization of thiophenes[J].Chemical Engineering Journal,2021,404:126987.
[7] Saleh T A,Al-Hammadi S A.A novel catalyst of nickel-loaded graphene decorated on molybdenum-alumina for the HDS of liquid fuels[J].Chemical Engineering Journal,2021,406:125167.
[8] Rajendran A,Fan H X,Cui T Y,et al.Enrichment of polymeric WOx species in WOxx@SnO2 catalysts for ultra-deep oxidative desulfurization of liquid fuels[J].Fuel,2021,290:120036.
[9] Yaseen M,Ullah S,Ahmad W,et al.Fabrication of Zn and Mn loaded activated carbon derived from corn cobs for the adsorptive desulfurization of model and real fuel oils[J].Fuel,2021,284:119102.
[10] 徐国菲,森董,曹永正,等.负载骨架镍吸附剂用于苯深度吸附脱硫的研究菲[J].工业催化,2021,29(9):47-52.
[11] 强孙,兰政达,郭旭强,等.离子液体萃取脱除残渣燃料油中硫化物[J].石油化工,2021,50(8):765-771.
[12] Li C P,Li D,Zou S S,et al.Extraction desulfurization process of fuels with ammonium-based deep eutectic solvents[J].Green Chemistry,2013,15(10):2793-2799.
[13] Sousa J P M,Neves R P P,Sousa S F,et al.Reaction mechanism and determinants for efficient catalysis by DszB,a key enzyme for crude oil bio-desulfurization[J].American Chemical Society Catalysis,2020,10(16):9545-9554.
[14] Song C S.An overview of new approaches to deep desulfurization for ultra-clean gasoline,diesel fuel and jet fuel[J].Catalysis Today,2003,86(1-4):211-263.
[15] Hou L P,Zhao R X,Li X P,et al.Preparation of MoO2/g-C3N4 composites with a high surface area and its application in deep desulfurization from model oil[J].Applied Surface Science,2018,434:1200-1209.
[16] Li X,Liu L D,Wang A J,et al.Creation of oxygen vacancies in MoO3/SiO2 by thermal decomposition of pre-impregnated citric acid under N2 and their positive role in oxidative desulfurization of dibenzothiophene[J].Catalysis Letters,2013,144(3):531-537.
[17] 郝阳阳,李秀萍,赵荣祥.MoO3/MIL-101(Cr)负载型催化剂的制备及其氧化脱硫性能[J].化学工程,2019,47(9):24-28.
[18] Bibak F,Moradi G.Oxidative desulfurization of model oil and oil cuts with MoO3/SBA-15:Experimental design and optimization by Box-Behnken method[J].Reaction Kinetics Mechanisms and Catalysis,2020,131(2):935-951.
[19] 刘晓艺,李秀萍,赵荣祥,等.ZrO2/SiO2催化剂的制备及其氧化脱硫性能研究[J].化工学报,2021,72(11):5653-5663.
[20] Rajendran A,Fan H X,Cui T Y,et al.Octamolybdates containing MoV and MoVI sites supported on mesoporous tin oxide for oxidative desulfurization of liquid fuels[J].Journal of Cleaner Production,2022,334:130199.
[21] Zou J C,Lin Y,Wu S H,et al.Molybdenum dioxide nanoparticles anchored on nitrogen-doped carbon nanotubes as oxidative desulfurization catalysts:Role of electron transfer in activity and reusability[J].Advanced Functional Materials,2021,31(22):2100442.
[22] 黄小侨.Mo/Al2O3催化剂制备及催化氧化船用燃料油脱硫[J].石油学报(石油加工),2019,35(3):456-462.
[23] Zhang X W,Shi Y W,Liu G Z.Direct preparation of [(CH3)3NC16H33]4Mo8O26 and its catalytic performance in oxidative desulfurization[J].Catalysis Science & Technology,2016,6(4):1016-1024.
[24] Kampouraki Z C,Giannakoudakis D A,Triantafyllidis K S,et al.Catalytic oxidative desulfurization of a 4,6-DMDBT containing model fuel by metal-free activated carbons:The key role of surface chemistry[J].Green Chemistry,2019,21(24):6685-6698.
[25] Giannakoudakis D A,Nair V,Khan A,et al.Additive-free photo-assisted selective partial oxidation at ambient conditions of 5-hydroxymethylfurfural by manganese(Ⅳ) oxide nanorods[J].Applied Catalysis B-Environmental,2019,256:117083.
[26] Prajapati Y N,Verma N.Adsorptive desulfurization of diesel oil using nickel nanoparticle-doped activated carbon beads with/without carbon nanofibers:Effects of adsorbate size and adsorbent texture[J].Fuel,2017,189:186-194.
[27] Dou S Y,Wang R.The C-Si Janus nanoparticles with supported phosphotungstic active component for Pickering emulsion desulfurization of fuel oil without stirring[J].Chemical Engineering Journal,2019,369:64-76.
[28] Xia L X,Zhang H R,Wei Z C,et al.Catalytic emulsion based on janus nanosheets for ultra-deep desulfurization[J].Chemistry-a European Journal,2017,23(8):1920-1929.
[29] Xia R,Lv W J,Zhao K Q,et al.Catalyst,emulsion stabilizer,and adsorbent:Three roles in one for synergistically enhancing interfacial catalytic oxidative desulfurization[J].Langmuir,2019,35(11):3963-3971.
[1] 王传军, 周久穆. CCS-EOR技术展望[J]. 现代化工, 2023, 43(2): 12-16.
[2] 苏介浦, 李阳. 高级氧化技术处理炼化废水的研究进展[J]. 现代化工, 2023, 43(2): 71-73,79.
[3] 张浩然, 张培立. 以水为氧、氢源电催化氧化与还原有机物的研究[J]. 现代化工, 2023, 43(2): 137-141.
[4] 梁正义, 黄华林, 梁斌, 周俊华, 黄柠, 黄慨. 微气泡-电催化协同氧化降解高浓度垃圾渗滤液的研究[J]. 现代化工, 2023, 43(2): 155-162.
[5] 李佳睿, 于毅, 徐丽, 刘国际, 姚怀伟. 钒钛基催化剂气固相催化氧化2-甲基萘制备2-萘甲醛的研究[J]. 现代化工, 2023, 43(2): 196-202.
[6] 王青, 刘学, 孙亚娟, 杨成. 负载普鲁士蓝的CoOOH纳米片用于抗氧化活性检测的研究[J]. 现代化工, 2023, 43(2): 234-238.
[7] 李宏达. 基于萘并2-氢-吲哚衍生物的反应型Cu2+荧光探针的合成[J]. 现代化工, 2023, 43(2): 239-243.
[8] 鲍萍, 王晓伟, 门金凤, 黄海. 氧化石墨烯基材料在放射性废水处理中的应用[J]. 现代化工, 2023, 43(1): 47-50,56.
[9] 张江涛, 王鹏, 王爽. 不同助剂对Ru/CeO2-NR的氨合成性能研究[J]. 现代化工, 2023, 43(1): 98-103,109.
[10] 张泽玉, 郎中敏, 吴刚强, 高向阳, 康英杰. 改性TiO2及其纳米流体的核沸腾传热特性[J]. 现代化工, 2023, 43(1): 116-121.
[11] 王灵智, 谢水波, 魏柏, 王晨旭, 郭宇, 刘迎九, 李绪忠. 柚子皮生物炭负载Mg/Al-LDH对废水中U(Ⅵ)的吸附性能研究[J]. 现代化工, 2023, 43(1): 163-168.
[12] 高峰, 程志强, 于晓斌. 菌丝球模板法制备二氧化钛中空纤维及其光催化性能研究[J]. 现代化工, 2023, 43(1): 181-184.
[13] 程秋月, 魏铭, 沈建强, 乔星明, 张志浩, 牛红让, 刘传奇. 氟化硅溶胶和超疏水涂层的制备及性能[J]. 现代化工, 2023, 43(1): 219-225.
[14] 卫奕辰, 章丽娜, 贾天博, 张煜昊, 於佳琦, 郑贤敏, 李翠翠, 王东光. 铜基催化剂电催化二氧化碳制乙烯的研究进展[J]. 现代化工, 2022, 42(S2): 34-38.
[15] 王杰. 天然气低氮燃烧技术研究现状与进展[J]. 现代化工, 2022, 42(S2): 47-50.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备09035943号-37
版权所有 © 《现代化工》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn