1. Guangxi Jiangyi Environmental Technology Co., Ltd., Nanning 530000, China; 2. State Key Laboratory for Enzymatic Hydrolysis of Non-food Biomass, National Engineering Research Center for Non-food Biomass Energy, Guangxi Key Laboratory of Biomass Refining, Guangxi Academy of Sciences, Nanning 530007, China; 3. Joint Laboratory of Integrated Ecological Environment Management and Intelligent Low-Carbon Management Technology, Institute of Eco-Environmental Research, Guangxi Academy of Sciences, Nanning 530007, China
Abstract: Microbubble-electrocatalytic synergic oxidation technology is employed to study the degradation of high concentration of landfill leachate.The influences of current density,pH,microbubble ventilation and other technological conditions on the treatment of high concentration of landfill leachate are investigated.The removal effects of COD and ammoniacal nitrogen by microbubble,hydrogen peroxide,electrocatalysis and their double combination synergic process respectively are compared and studied.The synergic co-oxidation process is optimized in response surface by using Design Expert 8 software.The optimal process conditions by response surface prediction are as follows:the current density is 33.3 mA·cm-2,the ventilation is 8.5 L·min-1,and the initial pH of the leachate is 8.5.Under these conditions,the removal rates of COD and ammoniacal nitrogen are 75.3% and 97.1%,respectively,which is basically consistent with the predicted values.
[1] 王凯,武道吉,彭永臻,等.垃圾渗滤液处理工艺研究及应用现状浅析[J].北京工业大学学报,2018,44(1):1-12. [2] Hui H,Wang H,Mo Y,et al.A three-stage fixed-bed electrochemical reactor for biologically treated landfill leachate treatment[J].Chemical Engineering Journal,2019,376:121026. [3] 杨帆.吹脱法处理高浓度氨氮废水工艺研究[J].甘肃科技,2019,35(13):65-69. [4] 赵建树,张金松,欧阳峰,等.三维电氧化-光芬顿-电催化氧化组合工艺处理垃圾渗滤液膜浓缩液中试研究[J].给水排水,2021,57(7):44-47. [5] Moreira F C,Boaventura R A R,Brillas E,et al.Electrochemical advanced oxidation processes:A review on their application to synthetic and real wastewaters[J].Applied Catalysis B:Environmental,2017,202:217-261. [6] Zhang Z,Teng C,Zhou K,et al.Degradation characteristics of dissolved organic matter in nanofiltration concentrated landfill leachate during electrocatalytic oxidation[J].Chemosphere,2020,255:127055. [7] Panizza M,Cerisola G.Direct and mediated anodic oxidation of organic pollutants[J].Chemical Reviews,2009,109(12):6541-6569. [8] 郭涛,王建,王娟娟,等.电催化氧化法处理垃圾渗滤液膜浓缩液试验研究[J].工业用水与废水,2021,52(1):27-30. [9] 吴天.Fenton-电氧化工艺处理垃圾渗滤液纳滤浓缩液的中试研究[J].现代化工,2022,42(2):25-30. [10] 马宏瑞,陈阳,马鹏飞.电化学氧化法处理高浓度氨氮废水研究[J].中国皮革,2018,47(3):50-56. [11] Wang Y,Zhou C,Meng G,et al.Treatment of landfill leachate membrane filtration concentrate by synergistic effect of electrocatalysis and electro-Fenton[J].Journal of Water Process Engineering,2020,37:101458. [12] 侯俭秋,靳凯豪.Ti/SnO2-Sb电极的制备及降解罗丹明B的研究[J].当代化工,2019,48(8):1711-1713. [13] 岳琳,王启山,郭建博,等.电催化氧化法去除垃圾渗滤液中的氨氮[J].工业水处理,2010,30(10):52-55. [14] Wang Q,Liu M,Zhao H,et al.Efficiently degradation of perfluorooctanoic acid in synergic electrochemical process combining cathodic electro-Fenton and anodic oxidation[J].Chemical Engineering Journal,2019,378:122071. [15] 陈金銮,施汉昌,徐丽丽.pH值对氨氮电化学氧化产物与氧化途径的影响[J].环境科学,2008,(8):2277-2281. [16] Deng Y,Englehardt J D.Treatment of landfill leachate by the Fenton process[J].Water Research,2006,40(20):3683-3694. [17] 王开红,岳琳,郭建博.电催化氧化法处理染料废水的影响因素及动力学[J].环境工程学报,2012,6(8):2640-2644. [18] 王龙,汪家权,吴康.Bi-PbO2电极电化学氧化去除模拟废水中氨氮的研究[J].环境科学学报,2014,34(11):2798-2805. [19] Deng Y,Englehardt J D.Electrochemical oxidation for landfill leachate treatment[J].Waste Management,2007,27(3):380-388. [20] Yang S,Feng Y,Gao D,et al.Electrocatalysis degradation of tetracycline in a three-dimensional aeration electrocatalysis reactor (3D-AER) with a flotation-tailings particle electrode (FPE):Physicochemical properties,influencing factors and the degradation mechanism[J].Journal of Hazardous Materials,2021,407:124361. [21] 刘志涛,田洋阳,宋伟,等.基于响应面法的旋流器直径与处理量关系研究[J].石油机械,2021,49(12):89-97.