Please wait a minute...
 
最新公告: 重要提醒:骗子冒充编辑部要求加作者微信,谨防上当!   关于暑假、寒假期间版面费发票及期刊样刊延迟邮寄的通知    
现代化工  2023, Vol. 43 Issue (2): 98-103    DOI: 10.16606/j.cnki.issn0253-4320.2023.02.020
  科研与开发 本期目录 | 过刊浏览 | 高级检索 |
SnO2/Na0.9Mg0.45Ti3.55O8异质结的制备及其光催化活性的研究
王景州, 张喜生, 马紫微, 姚陈忠
运城学院物理与电子工程系, 山西 运城 014000
Preparation of SnO2/Na0.9Mg0.45Ti3.55O8 heterojunction and study on its photocatalytic activity
WANG Jing-zhou, ZHANG Xi-sheng, MA Zi-wei, YAO Chen-zhong
Department of Physics and Electronic Engineering, Yuncheng University, Yuncheng 014000, China
下载:  PDF (6193KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用水热法合成SnO2/Na0.9Mg0.45Ti3.55O8(SnO2/NMTO)异质结,考察了SnO2/Na0.9Mg0.45Ti3.55O8对罗丹明B(RhB)的光催化活性。结果表明,SnO2/Na0.9Mg0.45Ti3.55O8的光催化活性优于NMTO和SnO2,SnO2的质量分数为10.0%时,具有最好的光催化活性;光照时产生的光生电子大部分迁移到界面处,有助于延长光生电子-空穴对的寿命,从而提高其光催化性能。瞬态光电流响应结果证实,光生电子-空穴对得到了有效分离。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王景州
张喜生
马紫微
姚陈忠
关键词:  水热法  异质结  SnO2/NMTO  电荷分离  光催化活性    
Abstract: SnO2/Na0.9Mg0.45Ti3.55O8 (SnO2/NMTO) heterojunction is synthesized through a hydrothermal technique,and its photocatalytic activity for Rhodamine B (RHB) is investigated.The results show that the photocatalytic activity of SnO2/NMTO is better than NMTO as well as SnO2 in terms of the degradation of RhB.SnO2/NMTO has the best photocatalytic activity when it contains 10% of SnO2.Most of the photogenerated electrons generated during illumination migrate to the interface,which is helpful in prolonging the lifetime of photogenerated electron-hole pairs,thus enhancing the photocatalytic performance of SnO2/NMTO.The results from transient photocurrent responses confirm that photogenerated electron-hole pairs are effectively separated.
Key words:  hydrothermal method    heterojunction    SnO2/NMTO    charge separation    photocatalytic activity
               出版日期:  2023-02-20
ZTFLH:  O733  
基金资助: 运城学院博士科研启动项目(YQ-2020001);优秀博士来晋科研专项(QZX-2020008);国家自然科学基金项目(U1810110);运城学院物理学学科建设项目
通讯作者:  王景州(1978-),男,博士,副教授,研究方向为纳米复合材料的制备,通讯联系人,wangjingzhou1101@126.com。    E-mail:  wangjingzhou1101@126.com
引用本文:    
王景州, 张喜生, 马紫微, 姚陈忠. SnO2/Na0.9Mg0.45Ti3.55O8异质结的制备及其光催化活性的研究[J]. 现代化工, 2023, 43(2): 98-103.
WANG Jing-zhou, ZHANG Xi-sheng, MA Zi-wei, YAO Chen-zhong. Preparation of SnO2/Na0.9Mg0.45Ti3.55O8 heterojunction and study on its photocatalytic activity. Modern Chemical Industry, 2023, 43(2): 98-103.
链接本文:  
https://www.xdhg.com.cn/CN/10.16606/j.cnki.issn0253-4320.2023.02.020  或          https://www.xdhg.com.cn/CN/Y2023/V43/I2/98
[1] Pellegrino F,Pellutiè L,Sordello F,et al.Influence of agglomeration and aggregation on the photocatalytic activity of TiO2 nanoparticles[J].Applied Catalysis B Environmental,2017,216(5):80-87.
[2] Zhang G,Du X,Wang Y,et al.Controllable synthesis of SnS2 nanostructures with high adsorption and photocatalytic activities[J].Materials Science in Semiconductor Processing,2017,64(15):77-84.
[3] Wang Q,Niu T,Jiao D,et al.Preparation of visible-light-driven BiOBr composites with encapsulated heteropolyacids (H3PW12O40) by zeolite for the photo-degradation of methyl orange[J].New Journal of Chemistry,2017,41:4322-4328.
[4] Guo C S,Gao S,Lv J,et al.Assessing the photocatalytic transformation of norfloxacin by BiOBr/iron oxides hybrid photocatalyst:Kinetics,intermediates,and influencing factors[J].Applied Catalysis B Environmental,2017,205:68-77.
[5] Yu C,Wu Z,Liu R,et al.Novel fluorinated Bi2MoO6 nanocrystals for efficient photocatalytic removal of water organic pollutants under different light source illumination[J].Applied Catalysis B Environmental,2017,209(15):1-11.
[6] Vaiano V,Matarangolo M,Sacco O,et al.Photocatalytic treatment of aqueous solutions at high dye concentration using praseodymium-doped ZnO catalysts[J].Applied Catalysis B Environmental,2017,209(15):621-630.
[7] Su X Q,Li J,Zhang Z Q,et al.Cu(Ⅱ) porphyrins modified TiO2 photocatalysts:Accumulated patterns of Cu(Ⅱ) porphyrin molecules on the surface of TiO2 and influence on photocatalytic activity[J].Journal of Alloys and Compounds,2015,626:252-259.
[8] Yoo H,Ba Ce,Yang Y,et al.Spatial charge separation in asymmetric structure of Au nanoparticle on TiO2 nanotube by light-induced surface potential imaging[J].Nano Letters,2014,14:4413-4417.
[9] Murcia J J,Hidalgo M C,Navío J A,et al.Cyclohexane photocatalytic oxidation on Pt/TiO2 catalysts[J].Catalysis Today,2013,209(15):164-169.
[10] Yurdakal S,Tek B S,Deǧ irmenci Ç,et al.Selective photocatalytic oxidation of aromatic alcohols in solar-irradiated aqueous suspensions of Pt,Au,Pd and Ag loaded TiO2 catalysts[J].Catalysis Today,2017,281:53-59.
[11] Kwiatkowski M,Chassagnon R,Heintz O,et al.Improvement of photocatalytic and photoelectrochemical activity of ZnO/TiO2 core/shell system through additional calcination:Insight into the mechanism[J].Applied Catalysis B Environmental,2017,204:200-208.
[12] Herrmann J M.Heterogeneous photocatalysis:Fundamentals and applications to the removal of various types of aqueous pollutants[J].Catal Today,1999,53:115-129.
[13] Sugimoto T,Zhou X,Muramatsu A.Synthesis of uniform anatase TiO2 nanoparticles by gel-sol method:4.Shape control[J].Journal of Colloid and Interface Science,2003,259(1):53-61.
[14] Chu S,Luo L,Yang J,et al.Low-temperature synthesis of mesoporous TiO2 photocatalyst with self-cleaning strategy to remove organic templates[J].Applied Surface Science,2012,258:9664-9667.
[15] Xu C,Zhu J,Yuan R,et al.More effective use of graphene in photocatalysis by conformal attachment of small sheets to TiO2 spheres[J].Carbon,2016,96:394-402.
[16] Arita T,Moriya K I,Yoshimura T,et al.Dispersion of phosphonic acids surface-modified titania nanocrystals in various organic solvents[J].Industrial & Engineering Chemistry Research,2010,49:9815-9821.
[17] Geng H,Peng R,Han S,et al.Surface-modified titania nanoparticles with conjugated polymer for hybrid photovoltaic devices[J].Journal of Electronic Materials,2010,39(10):2346-2351.
[18] Luo M L,Zhao J Q,Tang W,et al.Hydrophilic modification of poly (ether sulfone) ultrafiltration membrane surface by self-assembly of TiO2 nanoparticles[J].Applied Surface Science,2005,249(1-4):76-84.
[19] Zou X,Fan H,Tian Y,et al.Synthesis of Cu2O/ZnO hetero-nanorod arrays with enhanced visible light-driven photocatalytic activity[J].Crystengcomm,2014,16(6):1149-1156.
[20] Pu L,Yong L,Qian Z,et al.Iodinated SnO2 quantum dots:A facile and efficient approach to increase solar absorption for visible-light photocatalysis[J].Journal of Physical Chemistry C,2016,120(17):9253-9262.
[21] Cheng B,Russell J M,Shi W S,et al.Large-scale,solution-phase growth of single-crystalline SnO2 nanorods[J].Journal of the American Chemical Society,2004,126(19):5972-5973.
[22] Lou X W,Wang Y,Yuan C,et al.Template-free synthesis of SnO2 hollow nanostructures with high lithium storage capacity[J].Advanced Materials,2006,18:2325-2329.
[23] Kolmakov A,Zhang Y X,Cheng G S,et al.Detection of CO and O2 using tin oxide nanowire sensors[J].Advanced Materials,2003,15:997-1000.
[24] Kay A,Grtzel M.Dye-sensitized coreshell nanocrystals:Improved efficiency of mesoporous tin oxideelectrodes coated with a thin layer of an insulating oxide[J].Chemistry of Materials,2002,14:2930-2935.
[25] Guo Z Q,Zhou J P,An L L,et al.A newtypeof semiconductor Na0.9Mg0.45Ti3.55O8:Preparation,characterizationand photocatalysis[J].Journal of Materials Chemistry A,2014,2(47):0358-20366.
[26] Wang J Z,Guo Z Q,Zhou J P,et al.Plasmon-enhanced photocatalyticactivity of Na0.9Mg0.45Ti3.55O8 loaded with noblemetals directly observed with scanning kelvin probe microscopy[J].Nanotechnology,2018,29(30):305709.
[27] Wang J Z,Chen Q W,Zhou J P,et al.Two-step hydrothermal fabrication of Na0.23TiO2 nanofibers and enhanced photocatalysis after loaded with gold or silver determined by surface potentials[J].Internal Journal of Energy Research,2019,43(9):4062-4073.
[28] Wang J Z,Guo Z Q,Zhou J P,et al.The enhanced photocatalytic activity of Na0.9Mg0.45Ti3.55O8 co-loaded with silver and platinum[J].Internal Journal of Energy Research,2018,42:1056-1065.
[29] Zhao B,Chen Y W.Ag/TiO2 sol prepared by a sol-gel method and its photocatalytic activity[J].Journal of Physics and Chemistry of Solids,2011,72(11):1312-1318.
[30] Zhang Z,Shao C,Li X,et al.Hierarchical assembly of ultrathin hexagonal SnS2 nanosheets onto electrospun TiO2 nanofibers:Enhanced photocatalytic activity based on photoinduced interfacial charge transfer[J].Nanoscale,2013,5:606-618.
[31] Hosseini S,Borghei S,Vossoughi M,et al.Immobilization of TiO2 on perlite granules for photocatalytic degradation of phenol[J].Applied Catalysis B-Environmental,2007,74:53-62.
[32] Rex R E,Knorr F J,McHale J L.Imaging luminescent traps on single anatase TiO2 crystals:The influence of surface capping on photoluminescence and charge transport[J].Journal of Physical Chemistry C,2015,119:212-218.
[1] 杨馨, 李欣昊, 王宏归. Z型异质结Fe3O4@MoS2@SDS光催化降解抗生素的研究[J]. 现代化工, 2023, 43(1): 92-97.
[2] 田浩然, 刘福跃, 邰月辉, 刘章沛, 杨修业, 刘崎峰. 铋系异质结光催化剂的研究进展[J]. 现代化工, 2022, 42(7): 42-45.
[3] 丁立, 管朦, 李家耀, 施扬范, 韩维杰, 刘新梅. 基于百香果壳的荧光碳量子点的制备及对Fe3+的检测[J]. 现代化工, 2022, 42(6): 232-236.
[4] 田浩然, 刘福跃, 邰月辉, 韩博宇, 付威, 刘崎峰. 基于异质结的Bi2WO6/Bi2O2CO3复合光催化剂的制备及其在抗生素废水处理中的性能研究[J]. 现代化工, 2022, 42(5): 109-113,120.
[5] 许荣杰, 吴潘, 何坚, 刘长军, 蒋炜. Z型异质结C3N4/WO3光催化还原处理含Cr (Ⅵ)废水的研究[J]. 现代化工, 2022, 42(5): 114-120.
[6] 叶发萍, 解玉龙, 郭倩妮, 赵素琴. 多壁碳纳米管/钴镍层状双金属氢氧化物纳米复合材料的制备及电化学性能研究[J]. 现代化工, 2022, 42(4): 187-191.
[7] 吴涛, 李天保. WO3/CuBi2O4异质结的制备及其光电化学性能研究[J]. 现代化工, 2022, 42(12): 96-101.
[8] 黄擘, 郭贵宝. 炭吸附水热法制备GdFeO3粉体及其光催化性能的研究[J]. 现代化工, 2022, 42(12): 143-147.
[9] 刘霞, 石会龙, 李成帅, 刘博文, 史德青. g-C3N4/BiVO4光催化还原水中硝酸盐氮性能研究[J]. 现代化工, 2022, 42(12): 215-220.
[10] 刘海军, 刘斌, 刘慧, 吕露, 杜燕萍, 丁涛, 常薇. 微纳结构CuO光催化剂的研究进展[J]. 现代化工, 2022, 42(11): 17-21.
[11] 蒿琳静, 张杰, 张婷婷, 李冠鹏, 蒋苏毓, 杨敬贺. BiOCl/TiO2复合光催化材料研究进展[J]. 现代化工, 2022, 42(11): 44-48.
[12] 王幼琪, 蒋文武, 沈培智. 水热法制备掺氮活性炭及其电化学性能研究[J]. 现代化工, 2022, 42(11): 150-154.
[13] 李志勤, 任枭雄, 李宗轩, 邱泽刚. 氟化铵对CoMoS/ZrO2催化4-甲基酚加氢脱氧性能的影响[J]. 现代化工, 2022, 42(10): 135-139,144.
[14] 王振远, 李向阳, 李克艳, 郭新闻. Fe-Bi2WO6/TiO2异质结的构建及其光芬顿反应性能研究[J]. 现代化工, 2021, 41(S1): 183-188.
[15] 那平, 李萌, 高凯花, 王榕静, 潘玉福. 微乳液-水热法制备纳米氢氧化钙及其对亚甲基蓝去除的研究[J]. 现代化工, 2021, 41(5): 88-92.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备09035943号-37
版权所有 © 《现代化工》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn