Please wait a minute...
 
最新公告: 重要提醒:骗子冒充编辑部要求加作者微信,谨防上当!   关于暑假、寒假期间版面费发票及期刊样刊延迟邮寄的通知    
现代化工  2023, Vol. 43 Issue (1): 201-207    DOI: 10.16606/j.cnki.issn0253-4320.2023.01.036
  科研与开发 本期目录 | 过刊浏览 | 高级检索 |
多孔碳纳米管负载Fe3C纳米颗粒的电催化性能研究
谢炫豪, 朱夕夕, 蔡丰浚, 张强, 李佳忆, 刘雪莹, 曾妮, 张传玲
合肥工业大学化学与化工学院, 安徽 合肥 230009
Electrocatalytic performance of Fe3C nanoparticles anchored on porous carbon nanotubes
XIE Xuan-hao, ZHU Xi-xi, CAI Feng-jun, ZHANG Qiang, LI Jia-yi, LIU Xue-ying, ZENG Ni, ZHANG Chuan-ling
School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
下载:  PDF (5230KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 通过静电纺丝技术和后煅烧法成功制备了一种Fe3C纳米颗粒嵌入的N掺杂多孔碳纳米管材料(Fe3C-NCNT)。利用SEM、TEM、XRD、Raman、XPS等对催化剂进行表征,同时对所制备的Fe3C-NCNT纳米管在电催化氧还原反应时表现出的电催化活性和循环稳定性进行测试。结果表明,Fe3C@NCNT表现出优异的电催化ORR性能,为制备高效非贵金属电催化剂提供了一种简便有效的通用方法。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
谢炫豪
朱夕夕
蔡丰浚
张强
李佳忆
刘雪莹
曾妮
张传玲
关键词:  金属有机框架  电催化  多孔碳纳米管  静电纺丝  氧还原反应    
Abstract: Fe3C-NCNT,a kind of N-doped porous carbon nanotubes embedded with Fe3C nanoparticles,is successfully prepared through the electrospinning technology combining with a facile post calcination process.The as-synthesized Fe3C-NCNT is characterized by means of SEM,TEM,XRD,Raman spectroscopy,XPS and other methods,and its electrocatalytic activity and cycling stability for oxygen reduction reaction are determined simultaneously.It is shown that Fe3C-NCNT exhibits an excellent electrocatalytic ability for oxygen reduction reaction,thus providing a simple and effective general method for the preparation of high-efficiency non-noble metal electrocatalysts.
Key words:  metal organic framework    electrocatalysis    porous carbon nanotubes    electrospinning    oxygen reduction reaction
收稿日期:  2022-01-17      修回日期:  2022-11-02           出版日期:  2023-01-20
ZTFLH:  TH3  
基金资助: 合肥工业大学创新创业训练计划项目(202010359039);合肥工业大学"十四五"科技创新培育重点专项(PA2021KCPY0042)
通讯作者:  张传玲(1986-),女,博士,副教授,研究方向为静电纺制备功能性复合材料,通讯联系人,zhangcl@hfut.edu.cn。    E-mail:  zhangcl@hfut.edu.cn
作者简介:  谢炫豪(1999-),男,本科生,研究方向为MOF衍生电催化剂的制备,1215668596@qq.com。
引用本文:    
谢炫豪, 朱夕夕, 蔡丰浚, 张强, 李佳忆, 刘雪莹, 曾妮, 张传玲. 多孔碳纳米管负载Fe3C纳米颗粒的电催化性能研究[J]. 现代化工, 2023, 43(1): 201-207.
XIE Xuan-hao, ZHU Xi-xi, CAI Feng-jun, ZHANG Qiang, LI Jia-yi, LIU Xue-ying, ZENG Ni, ZHANG Chuan-ling. Electrocatalytic performance of Fe3C nanoparticles anchored on porous carbon nanotubes. Modern Chemical Industry, 2023, 43(1): 201-207.
链接本文:  
https://www.xdhg.com.cn/CN/10.16606/j.cnki.issn0253-4320.2023.01.036  或          https://www.xdhg.com.cn/CN/Y2023/V43/I1/201
[1] Wang X X,Swihart M T,Wu G.Achievements,challenges and perspectives on cathode catalysts in proton exchange membrane fuel cells for transportation[J].Nature Catalysis,2019,2:578-589.
[2] Li Z,Ji S,Liu Y,et al.Well-defined materials for heterogeneous catalysis:From nanoparticles to isolated single-atom sites[J].Chemical Reviews,2020,120:623-682.
[3] Stephens I E L,Rossmeisl J,Chorkendorff Ⅰ.Toward sustainable fuel cells[J].Science,2016,354:1378-1379.
[4] Wang H F,Chen L,Pang H,et al.MOF-derived electrocatalysts for oxygen reduction,oxygen evolution and hydrogen evolution reactions[J].Chemical Society Reviews,2020,49:1414-1448.
[5] Zhang K,Guo W,Liang Z,et al.Metal-organic framework based nanomaterials for electrocatalytic oxygen redox reaction[J].Science China-chemistry,2019,62:417-429.
[6] Shen K,Chen X,Chen J,et al.Development of MOF-derived carbon-based nanomaterials for efficient catalysis[J].ACS Catalysis,2016,6:5887-5903.
[7] Zheng Y,Jiao Y,Zhu Y,et al.Molecule-Level g-C3N4 coordinated transition metals as a new class of electrocatalysts for oxygen electrode reactions[J].Journal of the American Chemical Society,2017,139:3336-3339.
[8] 罗迎新,李翔,张博稳,等.铁氮掺杂石墨烯的制备及其氧还原性能研究[J].现代化工,2021,41(7):128-132.
[9] Liu J,Jin Z,Wang X,et al.Recent advances in active sites identification and regulation of M-N/C electro-catalysts towards ORR[J].Science China-chemistry,2019,62:669-683.
[10] Afsahi F,Kaliaguine S.Non-precious electrocatalysts synthesized from metal-organic frameworks[J].Journal of Materials Chemistry A,2014,2:12270-12279.
[11] Shao M,Chang Q,Dodelet J P,et al.Recent advances in electrocatalysts for oxygen reduction reaction[J].Chemical Reviews,2016,116:3594-3657.
[12] He W,Wang Y,Jiang C,et al.Structural effects of a carbon matrix in non-precious metal O2-reduction electrocatalysts[J].Chemical Society Reviews,2016,45:2396-2409.
[13] O'Keeffe M,Yaghi O M,Deconstructing the crystal structures of metal-organic frameworks and related materials into their underlying nets[J].Chemical Reviews,2012,112:675-702.
[14] Dang S,Zhu Q L,Xu Q.Nanomaterials derived from metal-organic frameworks[J].Nature Reviews Materials,2017,3:17075.
[15] 任雨峰,栾伟玲,姜滔.基于金属有机框架材料的氧还原催化剂研究进展[J].材料导报,2022,19:1-20.
[16] Barredo D,Lienhard V,Leseleuc S De,et al.synthetic three-dimensional atomic structures assembled atom by atom[J].Nature,2018,561:79-82.
[17] Liu J W,Liang H W,Yu S H.Macroscopic-scale assembled nanowire thin films and their functionalities[J].Chemical Reviews,2012,112:4770-4799.
[18] Liu J,Zhu D,Guo C,et al.Design Strategies toward Advanced MOF-Derived Electrocatalysts for Energy-Conversion Reactions[J].Advanced Energy Materials,2017,7:1700518.
[19] Guan B Y,Yu X Y,Wu H B,et al.Complex nanostructures from materials based on metal-organic frameworks for electrochemical energy storage and conversion[J].Advanced Materials,2017,29:1703614.
[20] Yang H,Wang X.Secondary-component incorporated hollow MOFs and derivatives for catalytic and energy-related applications[J].Advanced Materials,2018,31:e1800743.
[21] Cao X,Tan C,Sindoro M,et al.Hybrid micro-/nano-structures derived from metal-organic frameworks:Preparation and applications in energy storage and conversion[J].Chemical Society Reviews,2017,46:2660-2677.
[22] Li X,Yang X,Xue H,et al.Metal-organic frameworks as a platform for clean energy applications[J].Journal of Energy Chemistry,2020,2:100027.
[23] Chen Y,Li X,Park K,et al.Nitrogen-doped carbon for sodium-ion battery anode by self-etching and graphitization of bimetallic MOF-based composite[J].Chem,2017,3:152-163.
[24] Zhang C L,Lu B R,Cao F H,et al.Electrospun metal-organic framework nanoparticle fibers and their derived electrocatalysts for oxygen reduction reaction[J].Nano Energy,2019,55:226-233.
[25] Zhang C L,Liu J T,Li H,et al.The controlled synthesis of Fe3C/Co/N-doped hierarchically structured carbon nanotubes for enhanced electrocatalysis[J].Applied Catalysis B-Environmental,2020,261:118224.
[1] 李德慧, 付程, 王婵, 宋启军. 电沉积耦合高温煅烧法合成高效氮还原阴极Co3O4/Cu的研究[J]. 现代化工, 2023, 43(1): 104-109.
[2] 徐子涵, 王娟. 铁氮改性纳米金刚石的制备及其电化学性能研究[J]. 现代化工, 2023, 43(1): 157-162.
[3] 卫奕辰, 章丽娜, 贾天博, 张煜昊, 於佳琦, 郑贤敏, 李翠翠, 王东光. 铜基催化剂电催化二氧化碳制乙烯的研究进展[J]. 现代化工, 2022, 42(S2): 34-38.
[4] 闫灏, 张吉成, 李金华, 贾艳敏. 氧化锌掺杂钛酸铋材料的制备及其压电催化降解染料活性研究[J]. 现代化工, 2022, 42(S2): 103-107.
[5] 卫奕辰, 张春娥, 宋德斌, 文建军, 李翠翠. 硼掺杂氧化铜用于电还原CO2制乙烯研究[J]. 现代化工, 2022, 42(S2): 302-306.
[6] 宋志敏, 吕子威, 温福, 郭晓培, 苏介浦, 李阳. 炼化含油污泥处理中试研究[J]. 现代化工, 2022, 42(S2): 350-354.
[7] 许驰, 杨艺, 马磊, 范秋雨, 张博宇, 张建国. 多种电极电氧化深度处理焦化废水生化出水的研究[J]. 现代化工, 2022, 42(8): 177-182.
[8] 张蕊, 王思月, 洪耀华, 马星宇, 姜晓乐. 二维沸石咪唑骨架有效催化二氧化碳电还原的研究[J]. 现代化工, 2022, 42(7): 125-129.
[9] 陆宝山, 季业益, 关集俱. 旋转静电纺丝法制备PtCo纳米纤维及其电化学性能研究[J]. 现代化工, 2022, 42(6): 144-148.
[10] 吴逸, Saffian Abu, 李红林, 沈舒苏, 张干伟. UiO-66(Zr)型改性膜在水处理中的研究进展[J]. 现代化工, 2022, 42(4): 28-32,38.
[11] 刘嘉琪, 徐振, 齐骥, 梁长海. 碱性介质中铂-银合金电催化1,4-丁二醇氧化的研究[J]. 现代化工, 2022, 42(4): 93-98.
[12] 杨晨艺, 张培立. Ni-P电催化芳香伯胺氧化脱氢的研究[J]. 现代化工, 2022, 42(4): 151-155.
[13] 王彤, 陈康成, 黎汉生. 金属有机框架及其衍生物在甲醇电催化氧化中的应用研究进展[J]. 现代化工, 2022, 42(2): 51-56.
[14] 王学军, 刘军, 冯建立. 尼龙静电纺丝应用研究的现状与展望[J]. 现代化工, 2022, 42(2): 84-87.
[15] 吴涛, 李天保. WO3/CuBi2O4异质结的制备及其光电化学性能研究[J]. 现代化工, 2022, 42(12): 96-101.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备09035943号-37
版权所有 © 《现代化工》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn