Please wait a minute...
 
最新公告: 重要提醒:骗子冒充编辑部要求加作者微信,谨防上当!   关于暑假、寒假期间版面费发票及期刊样刊延迟邮寄的通知    
现代化工  2023, Vol. 43 Issue (1): 116-121    DOI: 10.16606/j.cnki.issn0253-4320.2023.01.021
  科研与开发 本期目录 | 过刊浏览 | 高级检索 |
改性TiO2及其纳米流体的核沸腾传热特性
张泽玉, 郎中敏, 吴刚强, 高向阳, 康英杰
内蒙古科技大学化学与化工学院, 内蒙古自治区煤化工与煤炭综合利用重点实验室, 内蒙古 包头 014010
Hydrophobic modification of TiO2 and study on nucleation boiling heat transfer properties of modified TiO2 based nanofluid
ZHANG Ze-yu, LANG Zhong-min, WU Gang-qiang, GAO Xiang-yang, KANG Ying-jie
Inner Mongolia Key Laboratory of Coal Chemical and Coal Comprehensive Utilization, School of Chemistry and Chemical Engineering, Inner Mongolia University of Science & Technology, Baotou 014010, China
下载:  PDF (7872KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用全氟癸基三甲氧基硅烷对纳米TiO2进行改性,有效改善了纳米粒子的团聚性能。利用两步法分别制备相同浓度范围的改性前/后TiO2纳米流体,考察了2组纳米流体的热导率、静态接触角对核沸腾传热特性的影响。结果表明,在质量分数为0.05%时,未改性纳米流体沸腾传热系数较去离子水最大提高16.3%,改性纳米流体传热系数可提高28.57%,且改性纳米流体临界热通量较未改性纳米流体降低11.68%。热导率和接触角是影响不同润湿性纳米流体具有不同沸腾传热特性的主要因素,润湿性较差纳米流体易提前起沸和形成核化点,但随热通量的增加会造成气泡合并、恶化传热。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张泽玉
郎中敏
吴刚强
高向阳
康英杰
关键词:  二氧化钛  疏水改性  纳米流体  强化传热  沸腾传热    
Abstract: Nano TiO2 is modified by perfluorodecyltrimethoxysilane to effectively enhance the aggregation properties of nanoparticles.TiO2 nanofluids with the same concentration range before and after modification are prepared by a two-step method,and the effects of thermal conductivity and static contact angle of the two groups of nanofluids on the nuclear boiling heat transfer characteristics are investigated.The results demonstrate that at a mass fraction of 0.05%,the boiling heat transfer coefficient of unmodified TiO2 nanofluid is up to 16.3% higher than that of deionized water,but that of modified TiO2 nanofluid is 28.57% higher than that of deionized water.Furthermore,the critical heat flux of modified TiO2 nanofluid is 11.68% lower than that of unmodified TiO2 nanofluid.Thermal conductivity and contact angle are the main factors affecting the boiling heat transfer characteristics of nanofluids with different wettability.The nanofluids with poor wettability tend to start boiling in advance and form nucleation points,but the increase in heat flux causes bubbles to merge and deteriorate heat transfer.
Key words:  titanium dioxide    hydrophobic modification    nanofluid    enhanced heat transfer    boiling heat transfer
收稿日期:  2022-02-16      修回日期:  2022-10-30           出版日期:  2023-01-20
ZTFLH:  TK124  
  TB64  
基金资助: 国家自然科学基金项目(21868022);内蒙古自治区科技计划项目(2021GG0043)
通讯作者:  郎中敏(1980-),女,硕士,教授,研究方向为多孔介质表面相变传热、纳米流体传热,通讯联系人,langzhongmin226@163.com。    E-mail:  langzhongmin226@163.com
作者简介:  张泽玉(1999-),女,硕士研究生,研究方向为纳米流体传热,2467778155@qq.com。
引用本文:    
张泽玉, 郎中敏, 吴刚强, 高向阳, 康英杰. 改性TiO2及其纳米流体的核沸腾传热特性[J]. 现代化工, 2023, 43(1): 116-121.
ZHANG Ze-yu, LANG Zhong-min, WU Gang-qiang, GAO Xiang-yang, KANG Ying-jie. Hydrophobic modification of TiO2 and study on nucleation boiling heat transfer properties of modified TiO2 based nanofluid. Modern Chemical Industry, 2023, 43(1): 116-121.
链接本文:  
https://www.xdhg.com.cn/CN/10.16606/j.cnki.issn0253-4320.2023.01.021  或          https://www.xdhg.com.cn/CN/Y2023/V43/I1/116
[1] Maxwell J.A treatise on electricity and magnetism[J].Nature,1873,7(182):478-480.
[2] Choi S,Eastman J A.Enhancing thermal conductivity of fluids with nanoparticles[J].Asme Fed,1995,66:99-105.
[3] 刘海洪,李先宁,蔡杰.浅水湖泊升流循环复氧装置的研制与性能[J].化工学报,2014,65(2):718-723.
[4] Mehralizadeh A,Shabanian S R,Bakeri G.Experimental and modeling study of heat transfer enhancement of TiO2/SiO2 hybrid nanofluids on modified surfaces in pool boiling process[J].European Physical Journal Plus,2020,135(10):796-825.
[5] Özbey,Arzu,Ozbey A,Karimzadehkhouei M,et al.Changing bubble dynamics in subcooled boiling with TiO2 nanoparticles on a platinum wire[J].Journal of Molecular Liquids,2017,242:456-470.
[6] Norouzipour A,Abdollahi A,Afrand M,et al.Experimental study of the optimum size of silica nanoparticles on the pool boiling heat transfer coefficient of silicon oxide/deionized water nanofluid[J].Powder Technology,2019,345:728-738.
[7] 张凇源,龙晓波,范兴祥,等.TiO2-R123纳米制冷剂管内流动沸腾传热特性[J].中国电机工程学报,2020,40(12):3959-3969.
[8] Chen R H,Chang T B.Heat transfer enhancement of pool boiling for a horizontal U-tube using TiO2-R141b nanofluid[J].Journal of Mechanical Science& Technology,2014,28(12):5197-5204.
[9] Sidik N A C,Adamu I M,Jamil M M,et al.Recent progress on hybrid nanofluids in heat transfer applications:A comprehensive review[J].International Communications in Heat & Mass Transfer A Rapid Communications Journal,2016,78:68-79.
[10] Kamatchi R,Venkatachalapathy S,Nithya C.Experimental investigation and mechanism of critical heat flux enhancement in pool boiling heat transfer with nanofluids[J].Heat & Mass Transfer,2016,52(11):2357-2366.
[11] Chen H,Ding Y,He Y,et al.Rheological behaviour of ethylene glycol based titania nanofluids[J].Chemical Physics Letters,2007,444(4-6):333-337.
[12] Padmanabhan V,Palanisamy S.The use of TiO2 nanoparticles to reduce refrigerator ir-reversibility[J].Energy Conversion & Management,2012,59(none):122-132.
[13] Ghadimi A,Metselaar I H.The influence of surfactant and ultrasonic processing on improvement of stability,thermal conductivity and viscosity of titania nanofluid[J].Experiment Thermal And Fluid Science,2013,51:1-9.
[14] Karimzadehkhouei M,Shojaeian M,Kürsat Sendur,et al.The effect of nanoparticle type and nanoparticle mass fraction on heat transfer enhancement in pool boiling[J].International Journal of Heat & Mass Transfer,2017,109:157-166.
[15] 韩晓雪.纳米TiO2表面性质与表面活性剂对纳米流体物性的影响[D].北京:华北电力大学(北京),2019.
[16] 柴永志,张伟,亚东.润湿性对微纳复合结构表面池沸腾换热的影响[J].高校化学工程学报,2017,31(4):984-990.
[17] 陈宏霞,黄林滨,宫逸飞.多孔结构及表面浸润性对池沸腾传热影响的研究进展[J].化工进展,2017,36(8):2798-2808.
[18] Chang M H,Liu H S,Tai C Y.Preparation of copper oxide nanoparticle sand its application in nanofluid[J].Powder Technology,2011,207(1-3):378-386.
[19] 庄大伟,杨艺菲,胡海涛,等.竖直翅片间液桥体积计算模型[J].化工学报,2016,67(10):4080-4085.
[1] 高峰, 程志强, 于晓斌. 菌丝球模板法制备二氧化钛中空纤维及其光催化性能研究[J]. 现代化工, 2023, 43(1): 181-184.
[2] 高向阳, 郎中敏, 康英杰. 纳米TiO2复合泡沫铜表面强化沸腾传热实验研究[J]. 现代化工, 2022, 42(S2): 142-146.
[3] 曹泷, 赵露星, 杨辉, 杨卧龙. 化学工艺构建微/纳结构沸腾表面的研究进展[J]. 现代化工, 2022, 42(8): 37-41.
[4] 顾明广, 苏芳. Sb掺杂二氧化钛光电极的制备与性能研究[J]. 现代化工, 2022, 42(8): 172-176.
[5] 欧阳园园, 李三喜, 蒋大富, 王松, Otitoju Tunmise Ayode. APTES-TiO2-B4C/PVDF膜的制备及其光降解有机染料的性能研究[J]. 现代化工, 2022, 42(8): 204-208.
[6] 杜春保, 蔡雨秀, 燕永利, 高明慧. 新型化学驱油技术研究进展[J]. 现代化工, 2022, 42(6): 35-39.
[7] 吕苏云, 杨文涵, 王聪, 班飒, 尹大学, 朱浩. Co/N-TiO2@C的制备及其光催化降解水中抗生素的研究[J]. 现代化工, 2022, 42(2): 131-135,141.
[8] 侯笑笑, 柴涛, 田楠, 刘悦. 新型光催化复合膜TiO2/GR/PDA的制备及性能研究[J]. 现代化工, 2022, 42(2): 188-192.
[9] 张亚杰, 陆金仁, 包木太, 李一鸣. ZFO/TNAs复合材料的制备及其光催化性能研究[J]. 现代化工, 2022, 42(1): 90-94.
[10] 谢锦印, 田甜, 张丹. Si-TiO2负载V2O5催化甲醇一步氧化法制二甲氧基甲烷的研究[J]. 现代化工, 2022, 42(1): 136-139.
[11] 杨晓艳, 张金源, 李惠娟, 李榕, 杨东海, 梁坤. 酚醛树脂改性磁载TiO2复合材料的制备及太阳光催化性能的研究[J]. 现代化工, 2021, 41(9): 118-122,128.
[12] 苏娜, 鲍晨宇, 高荣杰. MOFs/TiO2纳米复合材料的制备及其应用研究进展[J]. 现代化工, 2021, 41(6): 32-36.
[13] 铁云飞, 龚福忠, 刘茂举, 廖孙启. TiO2/C/BP复合负极材料的制备及其储锂性能研究[J]. 现代化工, 2021, 41(5): 103-107,113.
[14] 秦海洋, 郑永杰, 田景芝, 刘雯雯, 赵云鹏, 郑禾山, 李硕. Bi2O3-TiO2/污泥活性炭复合催化剂的制备及其可见光催化性能研究[J]. 现代化工, 2021, 41(3): 154-158.
[15] 曹泷, 杨辉, 杨卧龙, 王涛. 蒸发器管内沸腾传热强化方法研究进展[J]. 现代化工, 2021, 41(2): 55-60.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备09035943号-37
版权所有 © 《现代化工》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn