Please wait a minute...
 
最新公告: 重要提醒:骗子冒充编辑部要求加作者微信,谨防上当!   关于暑假、寒假期间版面费发票及期刊样刊延迟邮寄的通知    
现代化工  2023, Vol. 43 Issue (1): 26-30,36    DOI: 10.16606/j.cnki.issn0253-4320.2023.01.004
  技术进展 本期目录 | 过刊浏览 | 高级检索 |
绿色修复剂对土壤重金属修复研究进展
王雷1, 李箫宁1, 余波1, 严寒1, 潘远凤2
1. 中铁水务集团有限公司, 陕西 西安 712000;
2. 广西大学化学化工学院, 广西 南宁 530004
Research progress on green repairing agents for remediation of heavy metals in soil
WANG Lei1, LI Xiao-ning1, YU Bo1, YAN Han1, PAN Yuan-feng2
1. China Railway Water Group Co., Ltd., Xi'an 712000, China;
2. School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
下载:  PDF (1374KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 综述了土壤重金属的来源、危害以及纤维素、活性炭、黏土类矿物重金属钝化材料的研究进展。探讨了不同改性方法对土壤修复剂的重金属钝化性能的影响,并阐述了土壤重金属的相关修复机理。最后对绿色土壤重金属修复剂目前所面临的问题和未来研究方向进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王雷
李箫宁
余波
严寒
潘远凤
关键词:  绿色修复剂  土壤  重金属  修复  机理    
Abstract: The sources and hazards of heavy metals in soil are described,and the research progress of cellulose,activated carbon,and clay minerals in the passivation of heavy metals are reviewed.The effects of different modification methods on the passivation performance of soil remediation agents to heavy metals are discussed,and the related remediation mechanisms are also expounded.Finally,the existing problems and future research directions of green repairing agents for remediation of heavy metals in soil are prospected.
Key words:  green repairing agent    soil    heavy metals    remediation    mechanism
收稿日期:  2022-08-31      修回日期:  2022-11-02           出版日期:  2023-01-20
ZTFLH:  X53  
通讯作者:  李箫宁(1991-),女,博士,研究方向为环境友好型材料制备及水污染控制研究,通讯联系人,591172718@qq.com。    E-mail:  591172718@qq.com
作者简介:  王雷(1977-),男,本科,高级工程师,研究方向为污水处理过程优化与控制、水污染控制理论与技术和固废处理及资源化利用。
引用本文:    
王雷, 李箫宁, 余波, 严寒, 潘远凤. 绿色修复剂对土壤重金属修复研究进展[J]. 现代化工, 2023, 43(1): 26-30,36.
WANG Lei, LI Xiao-ning, YU Bo, YAN Han, PAN Yuan-feng. Research progress on green repairing agents for remediation of heavy metals in soil. Modern Chemical Industry, 2023, 43(1): 26-30,36.
链接本文:  
https://www.xdhg.com.cn/CN/10.16606/j.cnki.issn0253-4320.2023.01.004  或          https://www.xdhg.com.cn/CN/Y2023/V43/I1/26
[1] Yang Q,Li Z,Lu X,et al.A review of soil heavy metal pollution from industrial and agricultural regions in China:Pollution and risk assessment[J].Science of the Total Environment,2018,642:690-700.
[2] Gong Y,Zhao D,Wang Q.An overview of field-scale studies on remediation of soil contaminated with heavy metals and metalloids:Technical progress over the last decade[J].Water Research,2018,147:440-460.
[3] Yang Z,Guo W,Cheng Z,et al.Possibility of using combined compost-attapulgite for remediation of Cd contaminated soil[J].Journal of Cleaner Production,2022,368:133216.
[4] Xia Z,Zhang S,Cao Y,et al.Remediation of cadmium,lead and zinc in contaminated soil with CETSA and MA/AA[J].Journal of Hazardous Materials,2019,366:177-183.
[5] Liang X,Li N,He L,et al.Inhibition of Cd accumulation in winter wheat (Triticum aestivum L.) grown in alkaline soil using mercapto-modified attapulgite[J].Science of the Total Environment,2019,688:818-826.
[6] Liu L,Li W,Song W,et al.Remediation techniques for heavy metal-contaminated soils:Principles and applicability[J].Science of the Total Environment,2018,633:206-219.
[7] Zhao T,Zhang K,Chen J,et al.Changes in heavy metal mobility and availability in contaminated wet-land soil remediated using lignin-based poly(acrylic acid)[J].Journal of Hazardous Materials,2019,368:459-467.
[8] Xu J,Liu C,Hsu P C,et al.Remediation of heavy metal contaminated soil by asymmetrical alternating current electrochemistry[J].Nature Communications,2019,10(1):2440.
[9] Feng W,Zhang S,Zhong Q,et al.Soil washing remediation of heavy metal from contaminated soil with EDTMP and PAA:Properties,optimization,and risk assessment[J].Journal of Hazardous Materials,2020,381:120997.
[10] 王泓博,苟文贤,吴玉清,等.重金属污染土壤修复研究进展:原理与技术[J].生态学杂志,2021,40(8):2277-2288.
[11] Mao P,Zhuang P,Li F,et al.Phosphate addition diminishes the efficacy of wollastonite in decreasing Cd uptake by rice (Oryza sativa L.) in paddy soil[J].Science of the Total Environment,2019,687:441-450.
[12] Li Y,Xiao H,Pan Y,et al.Thermal and pH dual-responsive cellulose microfilament spheres for dye removal in single and binary systems[J].Journal of Hazardous Materials,2019,377:88-97.
[13] Hou X,Li Y,Pan Y,et al.Controlled release of agrochemicals and heavy metal ion capture dual-functional redox-responsive hydrogel for soil remediation[J].Chemical Communications,2018,54(97):13714-13717.
[14] 王明玉,李业东,袁超,等.有机物料改性处理对酸化黑土中铜的钝化效果[J].吉林农业大学学报,2019,41(3):336-341.
[15] Wang T,Liu Y,Wang J,et al.In-situ remediation of hexavalent chromium contaminated groundwater and saturated soil using stabilized iron sulfide nanoparticles[J].Journal of Environmental Management,2019,231:679-686.
[16] Wang T,Sun H,Ren X,et al.Evaluation of biochars from different stock materials as carriers of bacterial strain for remediation of heavy metal-contaminated soil[J].Scientific Reports,2017,7(1):12114.
[17] 王俊楠,程珊珊,展文豪,等.磁性生物炭的合成及对土壤重金属污染的钝化效果[J].环境科学,2020,41(5):2381-2389.
[18] Ahmad M,Usman A R A,Al-Faraj A S,et al.Phosphorus-loaded biochar changes soil heavy metals availability and uptake potential of maize (Zea mays L.) plants[J].Chemosphere,2018,194:327-339.
[19] Chen J,Shi Y,Hou H,et al.Stabilization and mineralization mechanism of Cd with Cu-loaded attapulgite stabilizer assisted with microwave irradiation[J].Environmental Science & Technology,2018,52(21):12624-12632.
[20] 章绍康,弓晓峰,申钊颖,等.改性凹凸棒土对土壤中Cd(Ⅱ)吸附解吸及钝化效果影响[J].环境工程,2019,37(3):192-197.
[21] Xu C,Qi J,Yang W,et al.Immobilization of heavy metals in vegetable-growing soils using nano zero-valent iron modified attapulgite clay[J].Science of the Total Environment,2019,686:476-483.
[22] Kumararaja P,Manjaiah K M,Datta S C,et al.Remediation of metal contaminated soil by aluminium pillared bentonite:Synthesis,characterisation,equilibrium study and plant growth experiment[J].Applied Clay Science,2017,137:115-122.
[23] 林海,靳晓娜,董颖博,等.膨润土对不同类型农田土壤重金属形态及生物有效性的影响[J].环境科学,2019,40(2):945-952.
[24] Kumararaja P,Manjaiah K M,Datta S C,et al.Chitosan-g-poly (acrylic acid)-bentonite composite:A potential immobilizing agent of heavy metals in soil[J].Cellulose,2018,25(7):3985-3999.
[25] 黄迪,杨燕群,肖选虎,等.土壤重金属污染治理修复剂技术[J].现代化工,2018,38(11):39-43.
[26] Bashir S,Ali U,Shaaban M,et al.Role of sepiolite for cadmium (Cd) polluted soil restoration and spinach growth in wastewater irrigated agricultural soil[J].Journal of Environmental Management,2020,258:110020.
[27] 李琳佳,夏建国,唐枭,等.海泡石对污染土壤中铅的钝化效果[J].生态环境学报,2019,28(5):1013-1020.
[28] He L,Zhong H,Liu G,et al.Remediation of heavy metal contaminated soils by biochar:Mechanisms,potential risks and applications in China[J].Environmental Pollution,2019,252:846-855.
[29] 马文静.生物炭负载纳米零价铁对重金属污染土壤修复机理的研究[D].泰安:山东农业大学,2022.
[30] Liu Y,Tie B,Peng O,et al.Inoculation of Cd-contaminated paddy soil with biochar-supported microbial cell composite:A novel approach to reducing cadmium accumulation in rice grains[J].Chemosphere,2020,247:125850.
[1] 桑军强, 高雨函, 任黎明, 秦冰, 孟凡宾, 王宇轩. 碳材料的功能化策略及在石化污染场地修复中的应用[J]. 现代化工, 2023, 43(1): 21-25.
[2] 崔涛, 王天宇, 赵赫. 工业乳化废液破乳剂研究趋势与进展[J]. 现代化工, 2023, 43(1): 51-56.
[3] 霍乾伟, 李天元, 张闻, 宋繁永, 王加宁, 陈贯虹. 微生物修复石油污染土壤影响因素分析[J]. 现代化工, 2022, 42(S2): 83-87,93.
[4] 侯心然, 李琪, 李天元, 李田, 孙小喜, 祁志冲, 张强. 盐胁迫对石油污染土壤生物强化修复过程的影响[J]. 现代化工, 2022, 42(S2): 98-102,107.
[5] 晋艳茹, 史鑫, 王学文, 杜令攀, 黄永丽, 杜雄雁, 符义忠. 硝酸分解磷矿过程中重金属及氟的迁移规律研究[J]. 现代化工, 2022, 42(S2): 119-126,131.
[6] 李运环, 冯长江, 崔俊瑛, 王典, 施泉州, 王海玲. 水生植物基载镁生物炭复合材料对水溶液中Cu2+、Pb2+的吸附研究[J]. 现代化工, 2022, 42(S2): 263-268.
[7] 周书葵, 田瑞, 段毅, 高聪, 吴姣. CuO/CoFe2O4活化过一硫酸盐去除四环素的研究[J]. 现代化工, 2022, 42(9): 102-108.
[8] 邱宏菊, 郝先东, 桂雨曦, 刘心童, 陈菓, 高磊. 废旧磷酸铁锂电池正极材料回收技术进展[J]. 现代化工, 2022, 42(7): 60-64,69.
[9] 周书葵, 杨柳, 段毅, 李嘉丽, 邹威燕. 锰基水滑石固定修复U (Ⅵ)污染土壤的研究[J]. 现代化工, 2022, 42(7): 90-96.
[10] 徐建强, 傅佳骏. 本征型自修复高分子材料研究进展[J]. 现代化工, 2022, 42(6): 64-68.
[11] 张以民, 刘洋, 陈侣, 张雄志. 超分子水凝胶原位制备纳米镍及其在对硝基苯酚催化还原中的应用[J]. 现代化工, 2022, 42(6): 124-128,134.
[12] 王薪, 刘世斌, 刘磊, 李南文. 耐碱的螺环型N-杂环季铵盐阴离子交换膜材料的研究进展[J]. 现代化工, 2022, 42(4): 23-27.
[13] 汪遵盛, 姚振龙, 张亚宣, 贾徐锦, 欧阳二明. 复合催化剂Bi5O7I/g-C3N4的制备及其光催化降解盐酸四环素的研究[J]. 现代化工, 2022, 42(4): 140-144,150.
[14] 王健, 张学佳, 赵文静, 米俊锋, 杜胜男. 低温等离子体协同催化处理VOCs研究进展[J]. 现代化工, 2022, 42(3): 41-45.
[15] 覃鼎浩, 金瑞豪, 金星龙. HCO3-活化过硫酸钠降解苯胺的研究[J]. 现代化工, 2022, 42(3): 104-108.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备09035943号-37
版权所有 © 《现代化工》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn