Please wait a minute...
 
最新公告: 重要提醒:骗子冒充编辑部要求加作者微信,谨防上当!   关于暑假、寒假期间版面费发票及期刊样刊延迟邮寄的通知    
现代化工  2022, Vol. 42 Issue (S2): 297-301,306    DOI: 10.16606/j.cnki.issn0253-4320.2022.S2.059
  科研与开发 本期目录 | 过刊浏览 | 高级检索 |
Cu-Zn/Al催化甲醇裂解耦合乙酸甲酯原位加氢制乙醇
吴涛1, 邢源泉1, 景帅旗1, 申利敏2, 王帅1, 申曙光1
1. 太原理工大学化学工程与技术学院, 山西 太原 030024;
2. 首钢长治钢铁有限公司, 山西 长治 046031
Cu-Zn/Al catalyzed methanol cracking coupling with in-situ hydrogenation of methyl acetate to ethanol
WU Tao1, XING Yuan-quan1, JING Shuai-qi1, SHEN Li-min2, WANG Shuai1, SHEN Shu-guang1
1. College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan 030024, China;
2. Shougang Changzhi Steel & Iron Co., Ltd., Changzhi 046031, China
下载:  PDF (5217KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用共沉淀法制备了不同Cu/Zn摩尔比的Cu-Zn/Al催化剂,利用N2-吸脱附、XRD、SEM、H2-TPR和NH3-TPD等手段对其进行一系列表征,并评价其催化甲醇裂解为原位氢源再用于乙酸甲酯加氢制乙醇的效果。结果表明,Cu/Zn摩尔比对催化剂的比表面积、铜物种的分散度和表面酸性起着调控作用;n(Cu)∶n(Zn)为1∶2的Cu-Zn/Al催化剂表现出优异的催化活性,在280℃、3 MPa、LHSV为1 h-1n(MeOH)∶n(MA)=3的条件下,乙酸甲酯转化率为91.1%,乙醇选择性为83.6%;经过200 h的稳定性测试,催化剂并没有表现出明显的失活。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴涛
邢源泉
景帅旗
申利敏
王帅
申曙光
关键词:  乙醇  甲醇  原位氢源  耦合反应  Cu-Zn/Al催化剂    
Abstract: Cu-Zn/Al catalysts with different Cu/Zn ratios are prepared via co-precipitation method,and characterized by a series of N2-sorption and desorption,XRD,SEM,H2-TPR and NH3-TPD.Their effects are evaluated in catalyzing methanol to crack as an in-situ hydrogen source for the hydrogenation of methyl acetate to ethanol.The results show that Cu/Zn ratio modulates the specific surface area,copper species dispersion and surface acidity of the catalysts.Cu-Zn/Al catalyst with a Cu/Zn ratio of 1/2 exhibits an excellent catalytic activity,over which the conversion of methyl acetate reaches 91.1% and the yield of ethanol reaches 83.6% at 280℃,3 MPa,LHSV=1 h-1,n(methanol)/n(methyl acetate)=3.After 200 h of stability test,the catalyst does not show significant deactivation.
Key words:  ethanol    methanol    in-situ hydrogen source    coupling reaction    Cu-Zn/Al catalyst
收稿日期:  2022-03-21      修回日期:  2022-05-09          
ZTFLH:  O643.38  
  TQ032.4  
通讯作者:  申曙光(1969-),男,博士,教授,博士生导师,研究方向为能源化工,通讯联系人,shenshuguang@tyut.edu.cn    E-mail:  shenshuguang@tyut.edu.cn
作者简介:  吴涛(1996-),男,硕士生,研究方向为能源化工,wutao@tyut.edu.cn
引用本文:    
吴涛, 邢源泉, 景帅旗, 申利敏, 王帅, 申曙光. Cu-Zn/Al催化甲醇裂解耦合乙酸甲酯原位加氢制乙醇[J]. 现代化工, 2022, 42(S2): 297-301,306.
WU Tao, XING Yuan-quan, JING Shuai-qi, SHEN Li-min, WANG Shuai, SHEN Shu-guang. Cu-Zn/Al catalyzed methanol cracking coupling with in-situ hydrogenation of methyl acetate to ethanol. Modern Chemical Industry, 2022, 42(S2): 297-301,306.
链接本文:  
https://www.xdhg.com.cn/CN/10.16606/j.cnki.issn0253-4320.2022.S2.059  或          https://www.xdhg.com.cn/CN/Y2022/V42/IS2/297
[1] Zhang F,Chen Z,Fang X,et al.Catalytic activity of Cu/ZnO catalysts mediated by MgO promoter in hydrogenation of methyl acetate to ethanol[J].Journal of Energy Chemistry,2021,61:203-209.
[2] Goldemberg J.Ethanol for a sustainable energy future[J].Science,2007,315(5813):808-810.
[3] Gan C,Wang Y,Ye C,et al.Effect of aging methods on CuZnAl catalysts for methyl acetate hydrogenation[J].Australian Journal of Chemistry,2019,72(6):417-424.
[4] Du C,Hondo E,Chizema L G,et al.An efficient microcapsule catalyst for one-step ethanol synthesis from dimethyl ether and syngas[J].Fuel,2021,283:118971.
[5] Cheung P,Bhan A,Sunley G J,et al.Selective carbonylation of dimethyl ether to methyl acetate catalyzed by acidic zeolites[J].Angewandte Chemie International Edition,2006,45(10):1617-1620.
[6] Liu J,Xue H,Huang X,et al.Dimethyl ether carbonylation to methyl acetate over HZSM-35[J].Catalysis Letters,2010,139(1):33-37.
[7] 杨天宇,曹祖宾,韩冬云,等.乙酸甲酯催化加氢制乙醇工艺[J].化工进展,2015,34(7):1872-1876,1904.
[8] Xi Y,Wang Y,Yao D,et al.Impact of the oxygen vacancies on copper electronic state and activity of Cu-based catalysts in the hydrogenation of methyl acetate to ethanol[J].ChemCatChem,2019,11(11):2607-2614.
[9] Palo D R,Dagle R A,Holladay J D.Methanol steam reforming for hydrogen production[J].Chemical Reviews,2007,107(10):3992-4021.
[10] Ghasemzadeh K,Harasi J N,Amiri T Y,et al.Methanol steam reforming for hydrogen generation:A comparative modeling study between silica and Pd-based membrane reactors by CFD method[J].Fuel Processing Technology,2020,199:106273.[11] 王悦,吕静,赵玉军,等.酯加氢制乙二醇/乙醇高效铜基催化剂的构筑[J].中国科学:化学,2020,50(2):183-191.[12] Ren Z,Younis M N,Zhao H,et al.Silver modified Cu/SiO2 catalyst for the hydrogenation of methyl acetate to ethanol[J].Chinese Journal of Chemical Engineering,2020,28(6):1612-1622.[13] 甘长娜.铜基催化剂在醋酸甲酯加氢制乙醇反应中的研究[D].天津:天津大学,2019.[14] 王竟荣.Cu物种晶粒尺寸对CuZnAl催化剂结构与性能的影响[D].太原:太原理工大学,2021.[15] Zhang S,Liu Q,Fan G,et al.Highly-dispersed copper-based catalysts from Cu-Zn-Al layered double hydroxide precursor for gas-phase hydrogenation of dimethyl oxalate to ethylene glycol[J].Catalysis Letters,2012,142(9):1121-1127.[16] 刘雯雯.醋酸甲酯催化加氢制乙醇研究[D].青岛:中国石油大学(华东),2017.[17] 房德仁,刘中民,张慧敏,等.沉淀温度对CuO/ZnO/Al2O3系催化剂前驱体性质的影响[J].天然气化工,2004,(4):28-32.[18] Yang D,Ye R,Lin L,et al.Boron modified bifunctional Cu/SiO2 catalysts with enhanced metal dispersion and surface acid sites for selective hydrogenation of dimethyl oxalate to ethylene glycol and ethanol[J].Nanomaterials,2021,11(12):3236.[19] Peng Y,Zhong L,Zhang W,et al.Cu-Zn/Al2O3 catalyst for the hydrogenation of esters to alcohols[J].Chinese Journal of Catalysis,2010,31(7):769-775.[20] Kwak B K,Park D S,Yun Y S,et al.Preparation and characterization of nanocrystalline CuAl2O4 spinel catalysts by sol-gel method for the hydrogenolysis of glycerol[J].Catalysis Communications,2012,24:90-95.[21] Abbas I,Kim H,Shin C H,et al.Differences in bifunctionality of ZnO and ZrO2 in Cu/ZnO/ZrO2/Al2O3 catalysts in hydrogenation of carbon oxides for methanol synthesis[J].Applied Catalysis B:Environmental,2019,258:117971.[22] 李慧,胡燚,苏国东,等.合成方法对γ-Al2O3催化剂乙醇脱水性能的影响[J].石油化工,2009,38(4):373-378.[23] 赵岩.高选择性高稳定性合成对二甲苯催化剂的研制[D].大连:大连理工大学,2011.[24] Van Helden P,Ciobcǎ I M,Coetzer R L J.The size-dependent site composition of FCC cobalt nanocrystals[J].Catalysis Today,2016,261:48-59.
[1] 陈伟华, 王晓如, 戴亚, 王龙, 牛丽娜, 何爱民. 超临界CO2萃取条件对烟草香料香味成分的影响[J]. 现代化工, 2022, 42(S2): 269-273,278.
[2] 尹民, 陆平, 张豪豪, 李海, 周准, 华超. 萃取精馏分离甲醇-三甲氧基硅烷的动态特性研究[J]. 现代化工, 2022, 42(9): 205-213.
[3] 张和平. 双碳背景下新能源技术发展现状及展望[J]. 现代化工, 2022, 42(8): 7-9.
[4] 陈洪派, 商辉, 孔志媛. 甲醇制烯烃工艺技术发展现状[J]. 现代化工, 2022, 42(8): 80-84,88.
[5] 张筱榕. ZrO2基复合催化剂的应用研究进展[J]. 现代化工, 2022, 42(7): 65-69.
[6] 王园园, 董省身, 宋华, 张梅, 孙兴龙, 王雪芹, 王文艺, 朱天汉. Co3O4/HY选择性催化苯甲醇氧化合成苯甲醛的研究[J]. 现代化工, 2022, 42(7): 114-119.
[7] 孟杰, 刘经伟, 朱伟, 汪洋, 管国锋. 过渡金属负载Al-SBA-16分子筛催化剂的制备、表征及性能研究[J]. 现代化工, 2022, 42(7): 219-223.
[8] 顾英. 甲醇装置串压风险分析及解决方案[J]. 现代化工, 2022, 42(7): 246-250.
[9] 张胜军, 门秀杰, 孙海萍, 刘斐齐. “双碳”背景下生物液体燃料的机遇、挑战及发展建议[J]. 现代化工, 2022, 42(6): 1-5.
[10] 蒋晓霄, 丁金伟, 洪凯伦, 黄江, 程磊. 超重力精馏与反应耦合回收甲醇[J]. 现代化工, 2022, 42(6): 225-226.
[11] 侯家萍, 王闻, 张蕾欣, 孙旭东. 现代生物质能源技术体系及其产业化应用态势[J]. 现代化工, 2022, 42(5): 7-13.
[12] 李楠, 王晓东, 黄伟. KAUST-8膜的制备及其对乙醇/水体系的渗透汽化分离性能的研究[J]. 现代化工, 2022, 42(5): 102-108.
[13] 朱伟平. 甲醇制烯烃技术开发进展[J]. 现代化工, 2022, 42(4): 82-86,92.
[14] 李昊洲, 李燕, 张述伟. 2种不同荒煤气衍生气中酸性气体成分脱除的低温甲醇洗工艺开发[J]. 现代化工, 2022, 42(4): 237-244.
[15] 牛宏伟, 马园园, 付豪, 廉红蕾. 铜基催化剂电还原CO2制乙醇的研究[J]. 现代化工, 2022, 42(3): 55-58,63.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备09035943号-37
版权所有 © 《现代化工》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn