Please wait a minute...
 
最新公告: 重要提醒:骗子冒充编辑部要求加作者微信,谨防上当!   关于暑假、寒假期间版面费发票及期刊样刊延迟邮寄的通知    
现代化工  2022, Vol. 42 Issue (S2): 88-93    DOI: 10.16606/j.cnki.issn0253-4320.2022.S2.020
  科研与开发 本期目录 | 过刊浏览 | 高级检索 |
Pt/Al2O3催化剂载体酸性对降解乙烯性能的影响
吕雪婷, 彭胜攀, 马子然, 王宝冬
北京低碳清洁能源研究院, 北京 102211
Effect of support acidity on performance of Pt/Al2O3 catalyst in ethylene oxidation
LV Xue-ting, PENG Sheng-pan, MA Zi-ran, WANG Bao-dong
National Institute of Clean-and-Low-Carbon Energy, Beijing 102211, China
下载:  PDF (4234KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 通过水热法制备出暴露(010)和(101)晶面的片状勃姆石,通过焙烧可得到暴露(110)和(111)晶面的片状氧化铝;不同焙烧升温程序保持了片状氧化铝形貌、孔结构、晶面等特征的一致性,实现了表面酸性作为单一变量的可控调节。γ-Al2O3界面Lewis酸增多能够降低Pt/γ-Al2O3催化氧化乙烯的起活温度。Pt/Al2O3-2相比Pt/Al2O3-600样品,酸性的提高促使其在190℃和120 000 h-1空速下乙烯转化速率提高约4倍,并在240℃达到完全氧化。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吕雪婷
彭胜攀
马子然
王宝冬
关键词:  催化剂载体  酸性  氧化铝    氧化    
Abstract: In order to improve the activity of degrading volatile organic compounds (VOCs) on precious metal-supported catalysts,adjusting the properties of the support of catalysts is one of important methods without need to increase the content of precious metals.Quadrilateral boehmite flakes with exposed (010) and (101) planes are prepared through the hydro-thermal method,and is calcined to obtain flake alumina with exposed (110) and (111) planes.The morphology,pore structure,crystal plane and other characteristics of the obtained flake γ-Al2O3 are maintained under different heating temperature programs,and the controllable adjustment of surface acidity as a single variable is realized.The increase of Lewis acidity of γ-Al2O3 can reduce the activation temperature of Pt/Al2O3 in oxidation of ethylene.The conversion speed of ethylene over Pt/Al2O3-2 with higher acidity compared with Pt/Al2O3-600 is about 5 times that over Pt/Al2O3-600 under 190℃ and GHSV=120 000 h-1,and ethylene reaches complete oxidation at 240℃.
Key words:  catalyst support    acidity    alumina    platinum    oxidation
收稿日期:  2022-04-14      修回日期:  2022-06-23          
ZTFLH:  TQ133  
  O643.36  
基金资助: 国家重点研发计划"废弃环保催化剂金属回收和载体再用技术研发及工业示范"(2019YFC1907501);国家能源集团科技项目"煤化工VOCs氧化催化关键材料开发与工程示范"(GJNY-21-74)
通讯作者:  王宝冬(1978-),男,博士,教授级高级工程师,研究方向为大气污染控制,通讯联系人,baodong.wang.d@chnenergy.com.cn    E-mail:  baodong.wang.d@chnenergy.com.cn
作者简介:  吕雪婷(1989-),女,硕士,工程师,研究方向为工业催化和煤化工,xueting.lv@chnenergy.com.cn
引用本文:    
吕雪婷, 彭胜攀, 马子然, 王宝冬. Pt/Al2O3催化剂载体酸性对降解乙烯性能的影响[J]. 现代化工, 2022, 42(S2): 88-93.
LV Xue-ting, PENG Sheng-pan, MA Zi-ran, WANG Bao-dong. Effect of support acidity on performance of Pt/Al2O3 catalyst in ethylene oxidation. Modern Chemical Industry, 2022, 42(S2): 88-93.
链接本文:  
https://www.xdhg.com.cn/CN/10.16606/j.cnki.issn0253-4320.2022.S2.020  或          https://www.xdhg.com.cn/CN/Y2022/V42/IS2/88
[1] 重点行业挥发性有机物综合治理方案[EB/OL].生态环境部,2019-06-26[2022-04-09].https://www.mee.gov.cn/xxgk2018/xxgk/xxgk03/201907/t20190703_708395.html.
[2] Xu S C,Jaegers N R,Hu W D,et al.High-field one-dimensional and two-dimensional 27Al magic-angle spinning nuclear magnetic resonance study of theta-,delta-,and gamma-Al2O3 dominated aluminum oxides:Toward understanding the Al sites in gamma-Al2O3[J].ACS Omega,2021,6(5):4090-4099.
[3] Gu Y,Liu H J,Yang M M,et al.Highly stable phosphine modified VO<i>x/Al2O3 catalyst in propane dehydrogenation[J].Applied Catalysis B:Environmental,2020,274:19089.
[4] Cai W M,Zhang S G,Lv J G,et al.Nanotubular gamma alumina with high-energy external surfaces:Synthesis and high performance for catalysis[J].ACS Catalysis,2017,7(6):4083-4092.
[5] Ho P H,Woo J W,Ilmasani R,et al.The role of Pd-Pt interactions in the oxidation and sulfur resistance of bimetallic Pd-Pt/γ-Al2O3 diesel oxidation catalysts[J].Industrial Engineering Chemistry Research,2021,60(18):6596-6612.
[6] Almohamadi H,Alamoudi M A,Smith K J.Washcoat overlayer for improved activity and stability of natural gas vehicle monolith catalysts operating in the presence of H2O and SO2[J].Industrial Engineering Chemistry Research,2021,60(9):6596-6612.
[7] Gan T,Chu X F,Qi H,et al.Pt/Al2O3 with ultralow Pt-loading catalyze toluene oxidation:Promotional synergistic effect of Pt nanoparticles and Al2O3 support[J].Applied Catalysis B:Environmental,2019,257:3572-3580.
[8] Liu Y,Wang S,Gao D N,et al.Influence of metal oxides on the performance of Pd/Al2O3 catalysts for methane combustion under lean-fuel conditions[J].Fuel Process Technology,2013,111:55-61.
[9] Sadykov I I,Zabilskiy M,Clark A H,et al.Time-resolved XAS provides direct evidence for oxygen activation on cationic iron in a bimetallic Pt-FeO<i>x/Al2O3 catalyst[J].ACS Catalysis,2021,11(18):11793-11805.
[10] Yang A C,Zhu H Y,Li Y J,et al.Support acidity improves Pt activity in propane combustion in the presence of steam by reducing water coverage on the active sites[J].ACS Catalysis,2021,11(11):6672-6683.
[11] Karl S,Stephen J P,Sokrates T P.Hydrogen and the structure of the transition aluminas[J].Journal of the American Chemical Society,1999,121(33):7493-7499.
[12] 赵国利,王少军,凌凤香,等.γ-Al2O3表面结构的红外光谱研究[J].当代化工,2012,41(7):661-663.
[13] Paglia G,Buckley C E,Rohl A L,et al.Tetragonal structure model for boehmite-derived gamma-alumina[J].Physical Review B,2003,68(14):144110.
[14] Thommes M,Kaneko K,Neimark A V,et al.Physisorption of gases,with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report)[J].Pure and Applied Chemistry,2015,87(9/10):1051-1069.
[15] Groen J C,Peffer L A,Pérez-Ramrez J.Pore size determination in modified micro-and mesoporous materials.Pitfalls and limitations in gas adsorption data analysis[J].Microporous Mesoporous Materials,2003,60(1-3):1-17.
[16] Liu Q,Wang A,Wang X,et al.Synthesis,characterization and catalytic applications of mesoporous gamma-alumina from boehmite sol[J].Microporous Mesoporous Materials,2008,111(1-3):323-333.
[17] He C,Cheng J,Zhang X,et al.Recent advances in the catalytic oxidation of volatile organic compounds:A review based on pollutant sorts and sources[J].Chemical Reviews,2019,119(7):4471-4568.
[18] Kwak J H,Hu J Z,Mei D,et al.Coordinatively unsaturated Al3+ centers as binding sites for active catalyst phases of platinum on gamma-Al2O3[J].Science,2009,325(5948):1670-1673.
[19] Naing S,Kristyawan I P A,Murakami H,et al.Development of detailed surface reaction mechanism of C2H4/C3H6 oxidation on Pt/γ-Al2O3 monolith catalyst based on gas phase and surface species analyses[J].Combustion Science and Technology,2020,DOI:10.1080/00102202.2020.1817905.
[1] 罗慰, 王婵, 阳晃亮, 刘渺, 李永忠, 邱振华, 岳源源. 催化剂酸性及孔结构对甘油气相脱水异构化制丙烯醛的影响[J]. 现代化工, 2022, 42(S2): 16-21,28.
[2] 卫奕辰, 章丽娜, 贾天博, 张煜昊, 於佳琦, 郑贤敏, 李翠翠, 王东光. 铜基催化剂电催化二氧化碳制乙烯的研究进展[J]. 现代化工, 2022, 42(S2): 34-38.
[3] 王杰. 天然气低氮燃烧技术研究现状与进展[J]. 现代化工, 2022, 42(S2): 47-50.
[4] 陈敏. 芬顿技术去除地下水有机污染物研究进展[J]. 现代化工, 2022, 42(S2): 66-70.
[5] 岳雨蒙, 盛健, 王思佳, 王东琪, 陆安慧. 蜂窝状氮化硼成型工艺及其催化丙烷氧化脱氢性能初探[J]. 现代化工, 2022, 42(S2): 76-82.
[6] 彭文争, 刘琦, 刘双星, 薛明, 彭勃. 天然气水合物清洁开采技术研究进展[J]. 现代化工, 2022, 42(9): 40-45.
[7] 叶舣, 赵兴雷. 燃煤电厂溶液吸收法碳捕集技术研究进展[J]. 现代化工, 2022, 42(9): 55-59,65.
[8] 陆诗建, 贡玉萍, 刘玲, 康国俊, 陈曦, 刘苗苗, 张娟娟, 王风. 醇胺溶液吸收CO2的腐蚀研究进展[J]. 现代化工, 2022, 42(9): 76-80.
[9] 张筱榕. 醇脱水制备α-烯烃的催化剂研究进展[J]. 现代化工, 2022, 42(9): 86-90,96.
[10] 马静, 方子昂, 林静, 马子然, 王红妍, 王宝冬, 刘爽. 耐高温Pt@TiO2催化剂的制备及其催化燃烧丙烷、丙烯性能研究[J]. 现代化工, 2022, 42(9): 120-124.
[11] 梁良, 任锦, 余敬谋, 石向群, 余霞. 两亲性胶束包覆Eu3+掺杂LDHs纳米载体材料的制备与性能研究[J]. 现代化工, 2022, 42(9): 125-128,133.
[12] 王逸飞, 王亚涛, 王新承, 马小丰, 李翠清, 王虹, 宋永吉. SiO2气凝胶负载过渡金属氧化物催化分解N2O的研究[J]. 现代化工, 2022, 42(9): 134-140.
[13] 唐欢, 许海民, 史新星, 毛亚, 谢欢, 杨文澜. 聚合物基纳米氧化铈复合吸附剂去除酸性废水中氟的研究[J]. 现代化工, 2022, 42(9): 141-145.
[14] 梁黎明, 孟杰, 刘经伟, 吴凤芹, 姚超. MnxCoy/ATP催化剂的制备及其催化氧化对二甲苯性能研究[J]. 现代化工, 2022, 42(9): 151-154.
[15] 齐雅楠, 康自华, 聂登攀, 罗斌, 吴怡逸, 戴毅, 彭昌琴. 高铁粉煤灰制备氧化铁颜料的试验研究[J]. 现代化工, 2022, 42(9): 165-169.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备09035943号-37
版权所有 © 《现代化工》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn