Please wait a minute...
 
最新公告: 重要提醒:骗子冒充编辑部要求加作者微信,谨防上当!   关于暑假、寒假期间版面费发票及期刊样刊延迟邮寄的通知    
现代化工  2022, Vol. 42 Issue (S2): 34-38    DOI: 10.16606/j.cnki.issn0253-4320.2022.S2.008
  技术进展 本期目录 | 过刊浏览 | 高级检索 |
铜基催化剂电催化二氧化碳制乙烯的研究进展
卫奕辰, 章丽娜, 贾天博, 张煜昊, 於佳琦, 郑贤敏, 李翠翠, 王东光
浙江海洋大学石油化工与环境学院, 浙江 舟山 316022
Research progress on copper-based catalysts for electrocatalysis of carbon dioxide to ethylene
WEI Yi-chen, ZHANG Li-na, JIA Tian-bo, ZHANG Yu-hao, YU Jia-qi, ZHENG Xian-min, LI Cui-cui, WANG Dong-guang
School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316022, China
下载:  PDF (1602KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 总结了电还原CO2为乙烯过程中催化剂的作用机理;从形态控制、缺陷工程、氧化物和合金等形成不同结构或者调整不同组成的铜基催化剂方面,讨论了电催化CO2还原转化为乙烯产物的催化剂设计策略;最后提出了改进电催化CO2还原技术的挑战和方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
卫奕辰
章丽娜
贾天博
张煜昊
於佳琦
郑贤敏
李翠翠
王东光
关键词:  二氧化碳还原  电催化  乙烯  铜基催化剂    
Abstract: The electrochemical reduction reaction of carbon dioxide (CO2) is an environmentally friendly,and commercially promising method to resolve the energy dilemma and accomplish carbon recycling.To date,with high efficiency and kinetic feasibility,copper-based electrode materials have been widely applied as "star materials" for CO2 reduction to hydrocarbons.This review firstly focuses on the mechanism of catalysts in the electrochemical reduction reaction of CO2.Simultaneously,the design strategy about electrocatalytic catalyst for CO2 reduction to ethylene is summarized on the basis of morphology control,defect engineering,oxide and alloy forming different structure or adjusting different composition of copper catalyst.Finally,challenges and perspectives are proposed for further improvement of CO2 electrochemical reduction technologies.
Key words:  reduction of carbon dioxide    electrocatalysis    ethylene    Cu-based catalyst    mechanism
收稿日期:  2022-03-19      修回日期:  2022-06-02          
ZTFLH:  TQ426.8  
基金资助: 有机分子修饰Cu基催化剂用于电催化CO2还原制备C2+化合物的研究(LQ21B030007)
通讯作者:  王东光(1972-),男,博士,副教授,研究方向为二氧化碳电催化,通讯联系人,dongguang_wang@163.com    E-mail:  dongguang_wang@163.com
作者简介:  卫奕辰(1997-),男,本科生,研究方向为电催化二氧化碳还原,2231951073@qq.com
引用本文:    
卫奕辰, 章丽娜, 贾天博, 张煜昊, 於佳琦, 郑贤敏, 李翠翠, 王东光. 铜基催化剂电催化二氧化碳制乙烯的研究进展[J]. 现代化工, 2022, 42(S2): 34-38.
WEI Yi-chen, ZHANG Li-na, JIA Tian-bo, ZHANG Yu-hao, YU Jia-qi, ZHENG Xian-min, LI Cui-cui, WANG Dong-guang. Research progress on copper-based catalysts for electrocatalysis of carbon dioxide to ethylene. Modern Chemical Industry, 2022, 42(S2): 34-38.
链接本文:  
https://www.xdhg.com.cn/CN/10.16606/j.cnki.issn0253-4320.2022.S2.008  或          https://www.xdhg.com.cn/CN/Y2022/V42/IS2/34
[1] Hori Y,Takahashi I,Koga O,et al.Electrochemical reduction of carbon dioxide at various series of copper single crystal electrodes[J].Journal of Molecular Catalysis A:Chemical,2003,199(1/2):39-47.
[2] Hori Y.Electrochemical CO2 reduction on metal electrodes[M].Modern Aspects of Electrochemistry,Springer,2008:89-189.
[3] Schouten K,Kwon Y,Van Der Ham C,et al.A new mechanism for the selectivity to C1 and C2 species in the electrochemical reduction of carbon dioxide on copper electrodes[J].Chemical Science,2011,2(10):1902-1909.
[4] Ou L.Chemical and electrochemical hydrogenation of CO2 to hydrocarbons on Cu single crystal surfaces:Insights into the mechanism and selectivity from DFT calculations[J].RSC Advances,2015,5(71):57361-57371.
[5] Ou L,Long W,Chen Y,et al.New reduction mechanism of CO dimer by hydrogenation to C2H4 on a Cu (100) surface:Theoretical insight into the kinetics of the elementary steps[J].RSC Advances,2015,5(117):96281-96289.
[6] Reske R,Mistry H,Behafarid F,et al.Particle size effects in the catalytic electroreduction of CO2 on Cu nanoparticles[J].Journal of the American Chemical Society,2014,136(19):6978-6986.
[7] Jeon H S,Kunze S,Scholten F,et al.Prism-shaped Cu nanocatalysts for electrochemical CO2 reduction to ethylene[J].ACS Catalysis,2018,8(1):531-535.
[8] Hori Y,Murata A,Takahashi R.Formation of hydrocarbons in the electrochemical reduction of carbon dioxide at a copper electrode in aqueous solution[J].Journal of the Chemical Society,Faraday Transactions 1:Physical Chemistry in Condensed Phases,1989,85(8):2309-2326.
[9] Kuhn A N,Zhao H,Nwabara U O,et al.Engineering silver-enriched copper core-shell electrocatalysts to enhance the production of ethylene and C2+ chemicals from carbon dioxide at low cell potentials[J].Advanced Functional Materials,2022,31(26):2101668.1-2101668.10.
[10] Gao Y,Wu Q,Liang X,et al.Cu2O nanoparticles with both{100}and{111}facets for enhancing the selectivity and activity of CO2 electroreduction to ethylene[J].Advanced Science,2020,7(6):1902820.
[11] Choi C,Kwon S,Cheng T,et al.Highly active and stable stepped Cu surface for enhanced electrochemical CO2 reduction to C2H4[J].Nature Catalysis,2020,3(10):804-812.
[12] Ma W,Xie S,Liu T,et al.Electrocatalytic reduction of CO2 to ethylene and ethanol through hydrogen-assisted C-C coupling over fluorine-modified copper[J].Nature Catalysis,2020,3(6):478-487.
[13] Kas R,Kortlever R,Yılmaz H,et al.Manipulating the hydrocarbon selectivity of copper nanoparticles in CO2 electroreduction by process conditions[J].ChemElectroChem,2015,2(3):354-358.
[14] Kim T,Palmore G T R.A scalable method for preparing Cu electrocatalysts that convert CO2 into C2+ products[J].Nature Communications,2020,11(1):1-11.
[15] Zhang B,Zhang J,Hua M,et al.Highly electrocatalytic ethylene production from CO2 on nanodefective Cu nanosheets[J].Journal of the American Chemical Society,2020,142(31):13606-13613.
[16] De Luna P,Quintero-Bermudez R,Dinh C T,et al.Catalyst electro-redeposition controls morphology and oxidation state for selective carbon dioxide reduction[J].Nature Catalysis,2018,1(2):103-110.
[17] Jung H,Lee S Y,Lee C W,et al.Electrochemical fragmentation of Cu2O nanoparticles enhancing selective C-C coupling from CO2 reduction reaction[J].Journal of the American Chemical Society,2019,141(11):4624-4633.
[18] Jiang Y,Choi C,Hong S,et al.Enhanced electrochemical CO2 reduction to ethylene over CuO by synergistically tuning oxygen vacancies and metal doping[J].Cell Reports Physical Science,2021,2(3):100356.
[19] Ren X,Zhang X,Cao X,et al.Efficient electrochemical reduction of carbon dioxide into ethylene boosted by copper vacancies on stepped cuprous oxide[J].Journal of CO2 Utilization,2020,38:125-131.
[20] Hou L,Han J,Wang C,et al.Ag nanoparticle embedded Cu nanoporous hybrid arrays for the selective electrocatalytic reduction of CO2 towards ethylene[J].Inorganic Chemistry Frontiers,2020,7(10):2097-2106.
[21] Hoang T T,Verma S,Ma S,et al.Nanoporous copper-silver alloys by additive-controlled electrodeposition for the selective electroreduction of CO2 to ethylene and ethanol[J].Journal of the American Chemical Society,2018,140(17):5791-5797.
[22] Xiong L,Zhang X,Yuan H,et al.Breaking the linear scaling relationship by compositional and structural crafting of ternary Cu-Au/Ag nanoframes for electrocatalytic ethylene production[J].Angewandte Chemie,2021,133(5):2538-2548.
[23] Feng Y,Li Z,Liu H,et al.Laser-prepared CuZn alloy catalyst for selective electrochemical reduction of CO2 to ethylene[J].Langmuir,2018,34(45):13544-13549.
[1] 向家兴, 谭亚南, 庞胜翠, 唐源. 双金属改性催化剂的制备及甲醇甲苯侧链烷基化反应性能研究[J]. 现代化工, 2022, 42(9): 181-185,189.
[2] 何盛宝, 侯雨璇, 王红秋. 双碳目标下乙烯生产技术发展趋势[J]. 现代化工, 2022, 42(8): 60-64.
[3] 钱俊峰, 郭欣荣, 刘平, 钟东文, 孙中华, 王钘, 吴中, 韦梅峻, 何明阳. Pd/C催化聚苯乙烯加氢制聚环己烷基乙烯的研究[J]. 现代化工, 2022, 42(8): 141-145.
[4] 许驰, 杨艺, 马磊, 范秋雨, 张博宇, 张建国. 多种电极电氧化深度处理焦化废水生化出水的研究[J]. 现代化工, 2022, 42(8): 177-182.
[5] 欧阳园园, 李三喜, 蒋大富, 王松, Otitoju Tunmise Ayode. APTES-TiO2-B4C/PVDF膜的制备及其光降解有机染料的性能研究[J]. 现代化工, 2022, 42(8): 204-208.
[6] 惠珽, 许贤文, 高胜利, 叶帅, 魏乐乐, 王光云, 李万林. 英力士淤浆工艺聚乙烯装置低压系统凝胶原因分析及对策[J]. 现代化工, 2022, 42(5): 243-245.
[7] 刘嘉琪, 徐振, 齐骥, 梁长海. 碱性介质中铂-银合金电催化1,4-丁二醇氧化的研究[J]. 现代化工, 2022, 42(4): 93-98.
[8] 杨晨艺, 张培立. Ni-P电催化芳香伯胺氧化脱氢的研究[J]. 现代化工, 2022, 42(4): 151-155.
[9] 牛宏伟, 马园园, 付豪, 廉红蕾. 铜基催化剂电还原CO2制乙醇的研究[J]. 现代化工, 2022, 42(3): 55-58,63.
[10] 房平, 杜明山, 李岩, 姬伟, 王琪, 崔舒榕. IL/GO/PVP/PVDF改性膜处理重金属离子的研究[J]. 现代化工, 2022, 42(3): 154-158.
[11] 弓浩宇, 杨幸川, 方鑫, 刘国际, 徐丽. 响应面法优化己二酸二甲酯低压催化加氢工艺研究[J]. 现代化工, 2022, 42(2): 172-176.
[12] 秦晶晶, 高翔, 张镇宇, 赵春欣, 鲍琳, 李延. 聚氨酯/还原氧化石墨烯/银复合材料的制备及其电催化性能研究[J]. 现代化工, 2022, 42(10): 96-100,107.
[13] 石金明, 高艺玮, 王国胜. 花瓣状CuCo2S4的制备及其在电化学检测抗坏血酸中的应用[J]. 现代化工, 2022, 42(10): 126-129.
[14] 张琳琳, 胡永杰, 白国栋, 江坤, 刘运权, 杜傲宇, 王夺, 叶跃元. 生物质碳基非贵金属ORR催化剂的制备及其性能研究[J]. 现代化工, 2022, 42(1): 151-156.
[15] 邹铖. 乙烯装置急冷油黏度控制措施探讨[J]. 现代化工, 2022, 42(1): 230-234.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备09035943号-37
版权所有 © 《现代化工》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn