Please wait a minute...
 
最新公告: 重要提醒:骗子冒充编辑部要求加作者微信,谨防上当!   关于暑假、寒假期间版面费发票及期刊样刊延迟邮寄的通知    
现代化工  2022, Vol. 42 Issue (12): 210-214    DOI: 10.16606/j.cnki.issn0253-4320.2022.12.038
  科研与开发 本期目录 | 过刊浏览 | 高级检索 |
基于二羧酸配体构筑的铁基金属有机骨架材料的制备及其电催化析氧性能
吴方1,2, 李秋琳3, 丁梦圆1, 高慧花1, 侯永琪1, 徐赵萍1, 方佳妮1
1. 蚌埠学院材料与化学工程学院, 安徽 蚌埠 233030;
2. 安徽省硅基新材料工程实验室, 安徽 蚌埠 233030;
3. 苏州科技大学材料科学与工程学院, 江苏 苏州 215011
Preparation of Fe-based metal organic frameworks from dicarboxylic acid ligands for electrocatalytic oxygen evolution
WU Fang1,2, LI Qiu-lin3, DING Meng-yuan1, GAO Hui-hua1, HOU Yong-qi1, XU Zhao-ping1, FANG Jia-ni1
1. School of Material and Chemical Engineering, Bengbu University, Bengbu 233030, China;
2. Anhui Provincial Engineering Laboratory of Silicon-Based Advanced Materials, Bengbu 233030, China;
3. College of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215011, China
下载:  PDF (3379KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 以三氯化铁为铁源、不同的二羧酸为配体,制备一系列铁基金属有机骨架材料(MOFs)。利用XRD、SEM和FT-IR等表征手段对其结构、形貌进行表征。结果表明,不同二羧酸配体构筑的铁基MOFs的析氧活性不同。相较于其他配体,以反丁烯二酸为配体构筑的MOFs表现出优异的析氧活性,在1 mol/L KOH电解液中,仅需255 mV和302 mV过电势即可达到10 mA/cm2和100 mA/cm2的电流密度,其对应的Tafel斜率仅为28.3 mV/dec;此外,该MOFs催化剂表现出优异的催化稳定性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴方
李秋琳
丁梦圆
高慧花
侯永琪
徐赵萍
方佳妮
关键词:  金属有机骨架材料  析氧反应  二羧酸配体  电解水    
Abstract: A series of iron-based metal organic frameworks (MOFs) are synthesized by using ferric trichloride as iron source and different dicarboxylic acids as ligands.The samples' structure and morphology are systematically investigated by means of XRD,SEM and FT-IR.Electrochemical tests indicate that Fe-based MOFs constructed with different dicarboxylic acid ligands have different oxygen evolution performances.Compared with other ligands,the MOFs constructed with fumaric acid as ligand exhibit excellent oxygen evolution activity,which can achieve a current density of 10 mA·cm-2 and 100 mA·cm-2 with only 255 mV and 302 mV of potentials,respectively in 1 mol·L-1 KOH electrolyte.The corresponding Tafel slope is 28.3 mV·dec-1.In addition,this MOFs catalyst exhibits excellent catalytic stability.
Key words:  metal organic frameworks    oxygen evolution reaction    dicarboxylic acid ligands    water splitting
收稿日期:  2022-07-05      修回日期:  2022-09-29           出版日期:  2022-12-20
ZTFLH:  TQ426  
基金资助: 蚌埠学院高水平科研培育项目(2021pyxm08);蚌埠学院高层次人才科研启动项目(BBXY2021KYQD04)
通讯作者:  吴方(1986-),男,博士,讲师,研究方向为电催化材料,通讯联系人,bbcwuf@163.com。    E-mail:  bbcwuf@163.com
引用本文:    
吴方, 李秋琳, 丁梦圆, 高慧花, 侯永琪, 徐赵萍, 方佳妮. 基于二羧酸配体构筑的铁基金属有机骨架材料的制备及其电催化析氧性能[J]. 现代化工, 2022, 42(12): 210-214.
WU Fang, LI Qiu-lin, DING Meng-yuan, GAO Hui-hua, HOU Yong-qi, XU Zhao-ping, FANG Jia-ni. Preparation of Fe-based metal organic frameworks from dicarboxylic acid ligands for electrocatalytic oxygen evolution. Modern Chemical Industry, 2022, 42(12): 210-214.
链接本文:  
https://www.xdhg.com.cn/CN/10.16606/j.cnki.issn0253-4320.2022.12.038  或          https://www.xdhg.com.cn/CN/Y2022/V42/I12/210
[1] Ifkovits Z P,Evans J M,Meier M C,et al .Decoupled electrochemical water-splitting systems:A review and perspective[J].Energy & Environmental Science,2021,14(9):4740-4759.
[2] Xu K,Zhu Z,Guo W,et al .Cerium oxide modified iridium nanorods for highly efficient electrochemical water splitting[J].Chemical Communications,2021,57(70):8798-8801.
[3] Zhang K,Zou R.Advanced transition metal-based OER electrocatalysts:Current status,opportunities,and challenges[J].Small,2021,17(37):2100129.
[4] Gao J,Tao H,Liu B.Progress of nonprecious-metal-based electrocatalysts for oxygen evolution in acidic media[J].Advanced Materials,2021,33(31):2003786.
[5] Zhao C X,Liu J N,Wang J,et al .Recent advances of noble-metal-free bifunctional oxygen reduction and evolution electrocatalysts[J].Chemical Society Reviews,2021,50(13):7745-7778.
[6] Zhou X,Jin H,Xia B Y,et al .Molecular cleavage of metal-organic frameworks and application to energy storage and conversion[J].Advanced Materials,2021,33(51):2104341.
[7] Ma J,Bai X,He W,et al .Amorphous FeNi-bimetallic infinite coordination polymers as advanced electrocatalysts for the oxygen evolution reaction[J].Chemical Communications,2019,55(83):12567-12570.
[8] Serre C,Mellot-Draznieks C,Surblé S,et al .Role of solvent-host interactions that lead to very large swelling of hybrid frameworks[J].Science,2007,315(5820):1828-1831.
[9] Chalati T,Horcajada P,Gref R,et al .Optimisation of the synthesis of MOF nanoparticles made of flexible porous iron fumarate MIL-88A[J].Journal of Materials Chemistry,2011,21(7):2220-2227.
[10] Wang L,Zhang Y,Li X,et al .The MIL-88A-derived Fe3O4-carbon hierarchical nanocomposites for electrochemical sensing[J].Scientific Reports,2015,5:14341.
[11] Qian Q,Li Y,Liu Y,et al .Ambient fast synthesis and active sites deciphering of hierarchical foam-like trimetal-organic framework nanostructures as a platform for highly efficient oxygen evolution electrocatalysis[J].Advanced Materials,2019,31(23):1901139.
[12] Lin H W,Raja D S,Chuah X F,et al .Bi-metallic MOFs possessing hierarchical synergistic effects as high performance electrocatalysts for overall water splitting at high current densities[J].Applied Catalysis B:Environmental,2019,258(5):118023.
[13] Tran P K L,Tran D T,Malhotra D,et al .Highly effective freshwater and seawater electrolysis enabled by atomic Rh-modulated Co-CoO lateral heterostructures[J].Small,2021,17(50):2103826.
[14] Wang Q,Xu H,Qian X,et al .Successive anion/cation exchange enables the fabrication of hollow CuCo2S4 nanorods for advanced oxygen evolution reaction electrocatalysis[J].Inorganic Chemistry,2022,61(7):3176-3185.
[15] Zhou Y,Wang Z,Pan Z,et al .Exceptional performance of hierarchical Ni-Fe (hydr)oxide@NiCu electrocatalysts for water splitting[J].Advanced Materials,2019,31(8):1806769.
[16] Li W,Li F,Yang H,et al .A bio-inspired coordination polymer as outstanding water oxidation catalyst via second coordination sphere engineering[J].Nature Communications,2019,10:5074.
[17] Shen J,Wang M,Zhang P,et al .Electrocatalytic water oxidation by copper(Ⅱ) complexes containing a tetra- or pentadentate amine-pyridine ligand[J].Chemical.Communications,2017,53(31):4374-4377.
[1] 孟利红, 胡洋, 李翔, 盛强. 硫脲作硫源制备过渡金属磷硫化物电解水析氢催化剂[J]. 现代化工, 2022, 42(S2): 114-118.
[2] 王凯, 陈春翔, 刘志琪, 闫蕊. 碳纳米管负载NiFe催化剂的制备及析氧性能研究[J]. 现代化工, 2021, 41(9): 135-138,144.
[3] 李涛, 武斌, 李会录, 林贻超. 海水电解析氧反应催化剂的研究进展[J]. 现代化工, 2021, 41(8): 24-28,32.
[4] 李子烨, 劳力云, 王谦. 制氢技术发展现状及新技术的应用进展[J]. 现代化工, 2021, 41(7): 86-89,94.
[5] 杨阳, 张胜中, 王红涛. 碱性电解水制氢关键材料研究进展[J]. 现代化工, 2021, 41(5): 78-82,87.
[6] 张帆, 赵瑞红, 王晓艳, 薛志伟, 王琳硕. 铟基MOFs制备及对废水中亚甲基兰吸附性能的研究[J]. 现代化工, 2021, 41(3): 196-201.
[7] 孙志裕, 黄小琴, 刘国强. 异质结构Co3O4@CoMoO4阵列的制备与析氧性能研究[J]. 现代化工, 2021, 41(3): 202-206,210.
[8] 梁梦迪, 任秀秀, 钟璟. MIL-53及改性材料的制备及其在C6异构体中的吸附性能研究[J]. 现代化工, 2020, 40(12): 156-159,163.
[9] 彭俊杰, 周佳盈, 张丙青. Ni2P催化剂的合成及其电解水制氢性能研究[J]. 现代化工, 2019, 39(8): 134-137.
[10] 刘江涛, 姜志浩, 张传玲. 镍铁合金纳米颗粒嵌入氮掺杂碳纳米纤维高活性析氧催化剂的研究[J]. 现代化工, 2019, 39(12): 89-93,99.
[11] 程凤如, 孙志裕, 熊凡, 罗惜情. Fe掺杂NiO/NiSe2空心纳米球的制备及其析氧性能研究[J]. 现代化工, 2019, 39(11): 145-148.
[12] 马蕊英, 孙兆松, 黄新露, 张英. 金属有机骨架材料Cu-BTC的成型及储甲烷性能研究[J]. 现代化工, 2018, 38(12): 129-131,133.
[13] 王龙江, 马英, 俞杰, 李永国, 樊惠玲, 王坤俊, 陈建利, 高琳锋. 金属有机骨架材料捕集气态放射性碘的研究进展[J]. 现代化工, 2017, 37(9): 62-65.
[14] 朱玉婵, 景莉, 袁敏, 刘毅, 赵干, 吴祯祯, 任占冬. 氧化电解水凝胶的制备及杀菌效果[J]. 现代化工, 2016, 36(5): 106-109,111.
[15] 李莹, 张红星, 闫柯乐, 杨静怡, 孙晓英, 邹兵. MOFs膜的制备方法及其应用研究[J]. 现代化工, 2016, 36(12): 28-32.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备09035943号-37
版权所有 © 《现代化工》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn