Please wait a minute...
 
最新公告: 重要提醒:骗子冒充编辑部要求加作者微信,谨防上当!   关于暑假、寒假期间版面费发票及期刊样刊延迟邮寄的通知    
现代化工  2022, Vol. 42 Issue (12): 114-119,123    DOI: 10.16606/j.cnki.issn0253-4320.2022.12.022
  科研与开发 本期目录 | 过刊浏览 | 高级检索 |
CeO2-TiO2纳米颗粒改性PVDF复合膜的研究
季红军1, 童裕佳2, 丁文龙2, 史丽建2, 李卫星1,2
1. 南京工大膜应用技术研究所有限公司, 江苏 南京 210009;
2. 南京工业大学化工学院材料化学工程国家重点实验室, 江苏 南京 210009
Research on modification of PVDF composite membrane by CeO2-TiO2 nanoparticles
JI Hong-jun1, TONG Yu-jia2, DING Wen-long2, SHI Li-jian2, LI Wei-xing1,2
1. Nanjing Membrane Application Institute Co., Ltd., Nanjing 210009, China;
2. State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
下载:  PDF (6065KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 以六水合硝酸铈、正丁醇钛为原料,通过水热合成技术制备了CeO2-TiO2、CeO2及TiO2纳米颗粒,将制备的纳米颗粒添加到聚偏氟乙烯(PVDF)中制备PVDF复合膜。利用X-射线衍射仪(XRD)、透射电子显微镜(TEM)、冷场扫描电子显微镜(SEM)对CeO2-TiO2纳米颗粒的形貌、结构及组成进行表征;利用红外光谱(FT-IR)、原子力显微镜(AFM)以及自制错流过滤系统对纯PVDF膜及PVDF复合膜的形貌、结构及性能进行表征。结果表明,CeO2-TiO2纳米颗粒呈现出多孔、聚集体结构及结晶状;相对于纯PVDF膜,PVDF复合膜的纯水通量、BSA截留率及通量恢复率均有不同程度的提升,尤其是PVDF-CeO2-TiO2(PVDF-CT)复合膜的亲水性和抗污染性有显著提升。当CeO2-TiO2纳米复合颗粒的质量分数为9%时,PVDF-CT复合膜对BSA的截留率达到94.1%,通量恢复率达到95%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
季红军
童裕佳
丁文龙
史丽建
李卫星
关键词:  PVDF复合膜  CeO2-TiO2纳米颗粒  水热反应  抗污染性  水处理    
Abstract: CeO2-TiO2 nanoparticles,CeO2 nanoparticles and TiO2 nanoparticles are prepared through hydrothermal synthesis technology with Ce(NO3)3·6H2O and titanium n-butanol (Ti(OC4H9)4) as raw materials.Those as-synthesized nanoparticles are applied to modify polyvinylidene fluoride (PVDF) membranes to prepare PVDF composite membranes.By means of X-ray diffraction (XRD),Transmission Electron Microscope (TEM),Cold field scanning electron microscope (SEM),Atomic Force Microscope (AFM) and self-made cross filtration system,the morphology,structure,composition and properties of CeO2-TiO2 nanoparticles and PVDF composite membranes are investigated.Results display that the as-synthesized CeO2-TiO2 nanoparticles show mesoporous,aggregated and crystal structures.In contrast with pure PVDF membrane,the flux,BSA rejection rate and flux recovery rate of PVDF composite membranes all have an increase to a content degree.Especially,the hydrophilicity and anti-fouling properties of PVDF-CeO2-TiO2 (PVDF-CT) composite membranes have a dramatic increase.The BSA rejection rate and flux recovery rate of PVDF-CT composite membranes achieve 94.1% and 95%,respectively when the addition of CeO2-TiO2 nanoparticles is 9 wt.%.
Key words:  PVDF composite membrane    CeO2-TiO2 nanoparticles    hydrothermal reaction    anti-fouling property    wastewater treatment
收稿日期:  2021-12-17      修回日期:  2022-09-30           出版日期:  2022-12-20
ZTFLH:  TQ028.8  
基金资助: 国家重点研发计划(2017YFD0400402);天津合成生物技术创新能力提升项目(TSBICIP-KJGG-003);江苏省教育厅青蓝计划及南京市江北新区新型研发机构青年研究员项目
通讯作者:  李卫星(1978-),男,博士,教授,研究方向为膜材料及膜应用研究,通讯联系人,wxli@njtech.edu.cn。    E-mail:  wxli@njtech.edu.cn
作者简介:  季红军(1983-),男,博士,工程师,研究方向为膜材料改性及在污水中的应用研究,hongjun-ji@163.com
引用本文:    
季红军, 童裕佳, 丁文龙, 史丽建, 李卫星. CeO2-TiO2纳米颗粒改性PVDF复合膜的研究[J]. 现代化工, 2022, 42(12): 114-119,123.
JI Hong-jun, TONG Yu-jia, DING Wen-long, SHI Li-jian, LI Wei-xing. Research on modification of PVDF composite membrane by CeO2-TiO2 nanoparticles. Modern Chemical Industry, 2022, 42(12): 114-119,123.
链接本文:  
https://www.xdhg.com.cn/CN/10.16606/j.cnki.issn0253-4320.2022.12.022  或          https://www.xdhg.com.cn/CN/Y2022/V42/I12/114
[1] Alsbaiee A,Smith B J,Xiao L, et al.Rapid removal of organic micropollutants from water by a porous beta-cyclodextrin polymer[J].Nature,2016,529:190-194.
[2] Eliasson J.The rising pressure of global water shortages[J].Nature,2015,517:6.
[3] Zhao X,Zhang R,Liu Y, et al.Antifouling membrane surface construction:Chemistry plays a critical role[J].Journal of Membrane Science,2018,551:145-171.
[4] Samree K,Srithai P,Kotchaplai P, et al.Enhancing the antibacterial properties of PVDF membrane by hydrophilic surface modification using titanium dioxide and silver nanoparticles[J].Membranes,2020,10:289.
[5] 杜林,秦秋毫,何健,等.磺化TA/CS复合纳滤膜的制备及性能研究[J].工业水处理,2021,41(9):123-128.
[6] Liu F,Hashim N A,Liu Y T, et al.Progress in the production and modification of PVDF membranes[J].Journal of Membrane Science,2011,375:1-27.
[7] Li X,Sotto A,Li J, et al.Progress and perspectives for synthesis of sustainable antifouling composite membranes containing in situ generated nanoparticles[J].Journal of Membrane Science,2017,524:502-528.
[8] Lai C Y,Groth A,Gray S,et al .Nanocomposites for improved physical durability of porous PVDF membranes[J].Membranes (Basel),2015,4:55-78.
[9] 李根,李国宇,李培礼,等.纳米SiO2的表面改性及SiO2/WEPN复合材料的制备与性能研究[J].现代化工,2021,41(9):173-177.
[10] Bet-moushoul E,Mansourpanah Y,Farhadi K,et al .TiO2 nanocomposite based polymeric membranes:A review on performance improvement for various applications in chemical engineering processes[J].Chemical Engineering Journal,2016,283:29-46.
[11] Yadav S,Jaiswar G.Review on undoped/doped TiO2 nanomaterial;synthesis and photocatalytic and antimicrobial activity[J].Journal of the Chinese Chemical Society,2017,64:103-116.
[12] Li W,Sun X,Wen C,et al .Preparation and characterization of poly (vinylidene fluoride)/TiO2 hybrid membranes[J].Frontiers of Environmental Science & Engineering,2012,7:492-502.
[13] Zhang J,Wang Z,Wang Q,et al .Comparison of antifouling behaviours of modified PVDF membranes by TiO2 sols with different nanoparticle size:Implications of casting solution stability[J].Journal of Membrane Science,2017,525:378-386.
[14] 陈熙,马永迪,翟笑影,等.Ag-PA/PVDF复合膜制备及其催化性能[J].天津工业大学学报,2021,40(5):11-16.
[15] Zhao Y,Yu W,Li R,et al .Electric field endowing the conductive polyvinylidene fluoride (PVDF)-graphene oxide (GO)-nickel (Ni) membrane with high-efficient performance for dye wastewater treatment[J].Applied Surface Science,2019,483:1006-1016.
[16] 王慧雅.TiO2/GO/PVDF改性复合膜的制备及抗污染性能研究[J].膜科学与技术,2021,41(1):80-88.
[17] 党在清,吕东亮.纳米TiO2对PVA/St复合膜性能的影响[J].塑料科技,2021,10:51-54.
[18] Hamzah N,Leo C P,Ooi B S.Superhydrophobic PVDF/TiO2-SiO2 membrane with hierarchical roughness in membrane distillation for water recovery from phenolic rich solution containing surfactant[J].Chinese Journal of Polymer Science,2019,37:609-616.
[19] Xu R,Li Y,Feng S,et al .Enhanced performance of planar perovskite solar cells using Ce-doped TiO2 as electron transport layer[J].Journal of Membrane Science,2020,55:5681-5689.
[20] Qamaruddin M,Khan I,Ajumobi O O,et al .Sulfur doped ceria-titania (S-CeTiO4-x ) nanocomposites for enhanced solar-driven water splitting[J].Solar Energy,2019,188:890-897.
[21] Gionco C,Paganini M C,Agnoli S,et al .Structural and spectroscopic characterization of CeO2-TiO2 mixed oxides[J].Journal of Materials Chemistry A,2013,36:10918-10926.
[1] 伯雅慧, 胡政宇, 齐美, 汪纯, 程鹏飞. 微藻生物膜贴壁培养及其在废水处理中的应用[J]. 现代化工, 2022, 42(9): 81-85.
[2] 古才荣. 高效硝化菌Alcaligenes faecalis CL-8降解特性及其应用研究[J]. 现代化工, 2022, 42(8): 193-198,203.
[3] 郑家乐, 蔡磊, 崔柳华, 薛明, 崔翔宇. 典型炼化企业污水处理厂VOCs治理技术改造及分析[J]. 现代化工, 2022, 42(8): 229-233.
[4] 于攀, 余健, 谢建军. 三维电极技术在废水处理中的研究与应用进展[J]. 现代化工, 2022, 42(6): 78-82.
[5] 牟春霞, 王琳, 王丽. CW-MFC处理六价铬废水及同步产电的研究[J]. 现代化工, 2022, 42(6): 106-111.
[6] 曾旭, 周仰原, 姚国栋, 赵建夫. 利用金属水热产氢原位还原CO2的研究进展[J]. 现代化工, 2022, 42(5): 77-81,86.
[7] 吴逸, Saffian Abu, 李红林, 沈舒苏, 张干伟. UiO-66(Zr)型改性膜在水处理中的研究进展[J]. 现代化工, 2022, 42(4): 28-32,38.
[8] 刘楚玉, 黄自力, 袁晨光, 朱超波, 肖硕, 黄涛. 磁分离技术在水处理中的应用[J]. 现代化工, 2022, 42(4): 72-76.
[9] 王飞飞, 李苑虹, 郭昱昊, 祝振洲, 张成武. 黄丝藻处理废水与生物质高值化利用研究进展[J]. 现代化工, 2022, 42(12): 54-59.
[10] 祁伟健, 张胜寒, 王若彤, 王智麟, 董旭明. 正渗透膜研究进展及其在电厂水处理中的应用[J]. 现代化工, 2022, 42(1): 85-89.
[11] 左雨欣, 楼俊兰, 徐文杰, 陈洪宇, 任晓聪. 人造沸石的改性及其在废水除磷中的应用[J]. 现代化工, 2021, 41(S1): 261-264.
[12] 齐亚兵, 张思敬, 杨清翠. 正渗透水处理技术研究现状及进展[J]. 现代化工, 2021, 41(8): 52-57.
[13] 徐文媛, 李素颖, 汪焱, 程永兵, 沈蒙莎, 彭家喜, 陈曦. 微污染水源水处理技术研究进展[J]. 现代化工, 2021, 41(7): 51-55.
[14] 尹楚杰, 吕源财, 潘文斌. 人工湿地填料在废水中脱氮除磷的应用研究进展[J]. 现代化工, 2021, 41(7): 68-71.
[15] 李柳, 黄李金鸿, 黄万抚, 包亚晴. 碳纳米管的改性及在水处理领域中的应用与回收[J]. 现代化工, 2021, 41(7): 95-98,102.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备09035943号-37
版权所有 © 《现代化工》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn