Please wait a minute...
 
最新公告: 重要提醒:骗子冒充编辑部要求加作者微信,谨防上当!   关于暑假、寒假期间版面费发票及期刊样刊延迟邮寄的通知    
现代化工  2022, Vol. 42 Issue (11): 150-154    DOI: 10.16606/j.cnki.issn0253-4320.2022.11.028
  科研与开发 本期目录 | 过刊浏览 | 高级检索 |
水热法制备掺氮活性炭及其电化学性能研究
王幼琪, 蒋文武, 沈培智
湖北汽车工业学院材料科学与工程学院, 湖北 十堰 442002
Hydrothermal synthesis of nitrogen-doped activated carbon and study on its electrochemical properties
WANG You-qi, JIANG Wen-wu, SHEN Pei-zhi
School of Materials Science & Engineering, Hubei University of Automotive Technology, Shiyan 442002, China
下载:  PDF (2422KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 以商业活性碳为原料、氨水为氮源,采用水热法制备掺氮活性炭。采用均匀设计法对实验参数(水热反应温度、时间和氨水用量)进行优化并得到回归方程。利用扫描电子显微镜、傅里叶红外光谱仪、比表面分析仪、循环伏安、恒电流充放电、交流阻抗等对优化条件下制备的掺氮活性炭进行表征。结果表明,优化条件下水热法制备的掺氮活性炭在扫描速率为10 mV/s时比电容达130.1 F/g,与回归方程计算值(133.5 F/g)吻合较好;充放电电流密度为1 A/g时,掺氮后活性炭比电容提升28%;在不同充放电倍率下循环10 000圈,比电容保持率达94.9%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王幼琪
蒋文武
沈培智
关键词:  水热法  氮掺杂  活性炭  均匀设计    
Abstract: Nitrogen-doped activated carbon is prepared through hydrothermal method with commercial activated carbon as raw material and ammonia as nitrogen source.Experimental parameters (hydrothermal reaction temperature,time and ammonia dosage) are optimized by uniform design experimentation method,and a regression equation is obtained.The nitrogen-doped activated carbon prepared under the optimized conditions is characterized by scanning electronic microscope (SEM),Fourier transform infrared spectrometer (FTIR),specific surface analyzer,cyclic voltammetry (CV),galvanostatic charge-discharge (GCD) and AC impedance (EIS).The results show that the specific capacitance of the nitrogen-doped activated carbon prepared through hydrothermal method under the optimized conditions is 130.1 F·g-1 at a scanning rate of 10 mV·s-1,which is in good agreement with the calculated value (133.5 F·g-1) by the regression equation.The specific capacitance of activated carbon after nitrogen-doping increases by 28% at 1 A·g-1 of charge discharge current density.The specific capacitance retention is 94.9% after 10,000 cycles at different charge and discharge rates.
Key words:  hydrothermal method    nitrogen doping    activated carbon    uniform design
收稿日期:  2021-11-26      修回日期:  2022-09-04           出版日期:  2022-11-20
ZTFLH:  TQ152  
基金资助: 湖北省高等学校优秀中青年科技创新团队计划项目(T201811)
通讯作者:  沈培智(1971-),男,博士,副教授,硕士生导师,研究方向为新能源材料与器件,通讯联系人,382744969@qq.com。    E-mail:  382744969@qq.com
作者简介:  王幼琪(1996-),女,硕士研究生,研究方向为储能材料,1805548995@qq.com
引用本文:    
王幼琪, 蒋文武, 沈培智. 水热法制备掺氮活性炭及其电化学性能研究[J]. 现代化工, 2022, 42(11): 150-154.
WANG You-qi, JIANG Wen-wu, SHEN Pei-zhi. Hydrothermal synthesis of nitrogen-doped activated carbon and study on its electrochemical properties. Modern Chemical Industry, 2022, 42(11): 150-154.
链接本文:  
https://www.xdhg.com.cn/CN/10.16606/j.cnki.issn0253-4320.2022.11.028  或          https://www.xdhg.com.cn/CN/Y2022/V42/I11/150
[1] Zhu Q C, Zhao D Y, Cheng M Y, et al.A new view of supercapacitors:Integrated supercapacitors[J].Advanced Energy Materials, 2019, 9(36):1901081.
[2] Libich Jiří, Máca Josef, Vondrák Jiří, et al.Supercapacitors:Properties and applications[J].Journal of Energy Storage, 2018, 17:224-227.
[3] Zoha H, Mohammad Hadi D, Mohsen H, et al.Methods for preparation and activation of activated carbon:A review[J].Environmental Chemistry Letters, 2020, 18:393-415.
[4] Fan W J, Ding J, Ding J N, et al.Identifying heteroatomic and defective sites in carbon with dual-ion adsorption capability for high energy and power zincion capacitor[J].Nano-Micro Letters, 2021, 13(1):59-77.
[5] Mo Y H, Du J, Lv H J, et al.N-doped mesoporous carbon nanosheets for supercapacitors with high performance[J].Diamond and Related Materials, 2021, (1):108206.
[6] Raj Sundar M, Regan F, Victor N J, et al.A.(2020).S-doped activated mesoporous carbon derived from the Borassus flabellifer flower as active electrodes for supercapacitors[J].Materials Chemistry and Physics, 2020, 240(15):122151.
[7] Huang Y B, Pradip P, Sun J K, et al.From covalent-organic framework to hierarchically porous B-doped carbons:A molten-salt approach[J].Mater Chem A, 2016, 4:4273-4279.
[8] Guo J, Wu D L, Wang T, et al.P-doped hierarchical porous carbon aerogels derived from phenolic resins for high performance supercapacitor[J].Applied Surface Science, 2019, 475:56-66.
[9] Gao L, Chen Z Y, Zhao H H, et al.Controllable preparation of nitrogen-doped hierarchical and honeycomb-like porous carbon/graphene based on composites of graphene oxide and polyaniline nanorod arrays for high performance supercapacitors[J].Journal of Energy Storage, 2021, 36:102314.
[10] Fan W J, Ding J, Ding J N, et al.Identifying heteroatomic and defective sites in carbon with dual-ion adsorption capability for high energy and power zinc ion capacitor[J].Nano-Micro Letters, 2021, 13:59.
[11] Chang J L, Gao Z Y, Zhao W Q, et al.Nitrogen doped microporous carbons with tunable and selective performances in supercapacitor and heterogeneous catalysis[J].Electrochimica Acta, 2016, 190:912-922.
[12] Chen Z, Li W L, Yang J, et al.Excellent electrochimical performance of potassium ion capacitor achieved by a high nitrogen doped actived carbon[J].Journal of Electrochemical Society, 2020, 167(5):050506.
[13] Han W Y, Wang H L, Xia K D, et al.Super nitrogen-doped actived carbon materials for water cleaning and energy storing prepared from renewable leather wastes[J].Enviroment International, 2020, 142:105846.
[14] Pétur Már Gíslasona, Egill Skúlason.Catalytic trends of nitrogen doped carbon nanotubes for oxygen reduction reaction[J].Nanoscale, 2019, 11:18683-18690.
[15] Zhang M, Lu C X, Bi Z H, et al.Preparation of highly pyrrolic-nitrogen-doped carbon aerogels for lithium-sulfur batteries[J].Chem Electro Chem, 2021, 8(5):895-902.
[16] Rodríguez-Corvera C L, Fajardo-Díaz J L, Cortés-López A J, et al.Nitrogen-doped carbon fiber sponges by using different nitrogen precursors:synthesis, characterization, and electrochemical activity[J].Materials Today Chemistry, 2019, 14:100200.
[17] Ju Z C, Li P Z, Ma G Y, et al.Few layer nitrogen-doped graphene with highly reversible potassium storage[J].Energy Storage Materials, 2018, 11:38-46.
[18] Lu X F, Wang H J, Zhang S Y, et al.Synthesis, characterization and electrocatalytic properties of carbon nitride nanotubes for methanol electrooxidation[J].Solid State Sciences, 2009, 11:428-432.
[19] Zimmerman J L, Willianms R, Khabashesku V N, et al.Synthesis of spherical carbon nitride nanostructures[J].Nano Letters, 2001, 1(12):731-734.
[20] Sun X Z, Zhang X, Zhang H T, et al.A comparative study of activated carbon-based symmetric supercapacitors in Li2SO4 and KOH aqueous electrolytes[J].Journal of Solid State Electrochemistry, 2012, 16(8):2597-2603.
[21] 孙现众, 张熊, 张大成, 等, 活性炭基Li2SO4水系电解液超级电容器[J].物理化学学报, 2012, 28(2):367-372.
[22] Xu C J, Du H D, Li B H, et al.Asymmetric activated carbon-manganese dioxide capacitors in mild aqueous electrolytes containing alkaline-earth cations[J].The Electrochemical Society, 2009, 156:A435-A441.
[1] 李江琴, 把明芳, 陕绍云, 胡天丁, 支云飞, 苏红莹, 蒋丽红. 纤维素基CO2吸附剂研究进展[J]. 现代化工, 2022, 42(9): 46-50.
[2] 吴慧玲, 薛伟洋, 顾彬, 刘梦洋, 荣欣, 李敬美, 孙承林. Pd/ZrO2-活性炭催化一锅法合成2-丁基环己酮的研究[J]. 现代化工, 2022, 42(9): 114-119.
[3] 刘洋, 郭少青, 孙万兴, 孙正轩, 成伟杰, 高丽兵, 郭静静. 重质沥青基活性炭的制备研究[J]. 现代化工, 2022, 42(8): 146-150.
[4] 丁立, 管朦, 李家耀, 施扬范, 韩维杰, 刘新梅. 基于百香果壳的荧光碳量子点的制备及对Fe3+的检测[J]. 现代化工, 2022, 42(6): 232-236.
[5] 袁钊, 刘忠久, 蔡铁强, 李高旗, 潘自琼, 郭卓. Cd0.5Zn0.5S/N-g-C3N4复合催化剂的制备及其可见光催化性能的研究[J]. 现代化工, 2022, 42(5): 218-223.
[6] 叶发萍, 解玉龙, 郭倩妮, 赵素琴. 多壁碳纳米管/钴镍层状双金属氢氧化物纳米复合材料的制备及电化学性能研究[J]. 现代化工, 2022, 42(4): 187-191.
[7] 宋雨蔷, 邢献军, 卜玉蒸, 罗甜. 氮磷共掺杂生物质多孔碳材料的制备及其氧还原性能研究[J]. 现代化工, 2022, 42(3): 199-204.
[8] 代元元, 徐小雷, 赵长森, 解荣永. 乙炔氢氯化反应催化剂载体的研究进展[J]. 现代化工, 2022, 42(2): 78-83.
[9] 李志勤, 任枭雄, 李宗轩, 邱泽刚. 氟化铵对CoMoS/ZrO2催化4-甲基酚加氢脱氧性能的影响[J]. 现代化工, 2022, 42(10): 135-139,144.
[10] 刘令语, 任新华, 李雅婕, 洪耀良. 铁炭联合强化污泥水解液厌氧消化效能研究[J]. 现代化工, 2022, 42(10): 165-168,174.
[11] 刘雯欣, 李丹, 王平, 张朋, 张伟, 鲁墨弘, 李明时, 朱劼. 氮掺杂介孔碳纳米球负载铂催化剂在肉桂醛选择性加氢中的催化性能研究[J]. 现代化工, 2022, 42(1): 178-183.
[12] 王芳平, 张劲斌, 罗英涛, 李晨阳, 杜娟, 李豪. 碱炭比对微波法制备玉米芯活性炭电容性能的影响[J]. 现代化工, 2022, 42(1): 213-217.
[13] 刘建明. 反渗透浓水中有机物的组成特性及去除方法研究[J]. 现代化工, 2021, 41(S1): 114-119.
[14] 曹培玲, 崔建国. 用于水中色氨酸去除的活性炭材料优选实验研究[J]. 现代化工, 2021, 41(S1): 154-158.
[15] 罗迎新, 李翔, 张博稳, 颜学敏, 张研, 邓晓清. 铁氮掺杂石墨烯的制备及其氧还原性能研究[J]. 现代化工, 2021, 41(7): 128-132.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备09035943号-37
版权所有 © 《现代化工》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn