Please wait a minute...
 
最新公告: 重要提醒:骗子冒充编辑部要求加作者微信,谨防上当!   关于暑假、寒假期间版面费发票及期刊样刊延迟邮寄的通知    
现代化工  2022, Vol. 42 Issue (11): 44-48    DOI: 10.16606/j.cnki.issn0253-4320.2022.11.009
  技术进展 本期目录 | 过刊浏览 | 高级检索 |
BiOCl/TiO2复合光催化材料研究进展
蒿琳静1, 张杰1, 张婷婷2, 李冠鹏2, 蒋苏毓2, 杨敬贺2
1. 郑州大学生态与环境学院, 河南 郑州 450001;
2. 郑州大学化工学院, 河南 郑州 450001
Advances in BiOCl/TiO2 composite photocatalytic materials
HAO Lin-jing1, ZHANG Jie1, ZHANG Ting-ting2, LI Guan-peng2, JIANG Su-yu2, YANG Jing-he2
1. School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China;
2. School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
下载:  PDF (1637KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 TiO2具有化学稳定性好、无毒、降解彻底、生产成本低等优点,已成为环境领域常用的半导体材料。然而,TiO2的可见光响应范围小、光致空穴电荷复合快,限制了其实际应用。为了克服这些限制,人们采取了各种策略,包括元素掺杂、形貌调整、贵金属沉积和与其他半导体形成异质结结构等,其中将BiOCl与TiO2偶联制备异质结复合材料的设计越来越受到人们的重视。综述了近年来BiOCl/TiO2复合光催化剂的研究进展,包括二元催化剂、三元催化剂以及四元催化剂的应用,并对BiOCl/TiO2复合光催化的未来发展方向进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
蒿琳静
张杰
张婷婷
李冠鹏
蒋苏毓
杨敬贺
关键词:  BiOCl/TiO2  光催化  异质结    
Abstract: This article reviews the research progress in TiO2/BiOCl composite photocatalysts in recent years,including the application of binary catalyst,ternary catalyst and quaternary catalyst.The development directions of TiO2/BiOCl composite photocatalysis in the future is prospected.
Key words:  BiOCl/TiO2    photocatalysis    heterojunction
收稿日期:  2021-09-27      修回日期:  2022-08-22           出版日期:  2022-11-20
ZTFLH:  O643  
基金资助: 国家自然科学基金项目(21706241);国家博士后基金项目(2018M642791)
通讯作者:  杨敬贺(1986-),男,博士,副教授,研究方向为工业催化、电催化、环境治理,通讯联系人,jhyang@zzu.edu.cn。    E-mail:  jhyang@zzu.edu.cn
作者简介:  蒿琳静(1995-),女,硕士生
引用本文:    
蒿琳静, 张杰, 张婷婷, 李冠鹏, 蒋苏毓, 杨敬贺. BiOCl/TiO2复合光催化材料研究进展[J]. 现代化工, 2022, 42(11): 44-48.
HAO Lin-jing, ZHANG Jie, ZHANG Ting-ting, LI Guan-peng, JIANG Su-yu, YANG Jing-he. Advances in BiOCl/TiO2 composite photocatalytic materials. Modern Chemical Industry, 2022, 42(11): 44-48.
链接本文:  
https://www.xdhg.com.cn/CN/10.16606/j.cnki.issn0253-4320.2022.11.009  或          https://www.xdhg.com.cn/CN/Y2022/V42/I11/44
[1] He R, Cao S, Zhou P, et al.Recent advances in visiblelight bi-based photocatalysts[J].Chinese Journal of Catalysis, 2014, 35(7):989-1007.
[2] Ye L, Zan L, Tian L, et al.The {001} facets-dependent high photoactivity of BiOCl nanosheets[J].Chemical Communications., 2011, 47(24):6951-6953.
[3] Chai S Y, Kim Y J, Jung M H, et al.Heterojunctioned BiOCl/Bi2O3, A new visible light photocatalyst[J].Journal of Catalysis, 2009, 262(1):144-149.
[4] Ye L, Liu J, Gong C, et al.Two different roles of metallic Ag on Ag/AgX/BiOX(X=Cl, Br) visible light photocatalysts:Surface plasmon resonance and Z-scheme bridge[J].ACS Catalysis, 2012, 2(8):1677-1683.
[5] Sun D, Li J, He L, et al.Facile Solvothermal synthesis of BiOCl-TiO2 heterostructures with enhanced photocatalytic activity[J].Crystengcomm, 2014, 16(32):7564-7574.
[6] Shen Y, Yu X, Lin W, et al.A Facile preparation of immobilized BiOCl nanosheets/TiO2 arrays on FTO with enhanced photocatalytic activity and reusability[J].Applied Surface Science, 2017, 399:67-76.
[7] Zhu G, Hojamberdiev M, Tan C, et al.Photodegradation of organic dyes with anatase TiO2 nanoparticles-loaded BiOCl nanosheets with exposed {001} facets under simulated solar light[J].Materials Chemistry and Physics, 2014, 147(3):1146-1156.
[8] Zhang G, Tan Y, Sun Z, et al.Synthesis of BiOCl/TiO2 heterostructure composites and their enhanced photocatalytic activity[J].Journal of Environmental Chemical Engineering, 2017, 5(1):1196-1204.
[9] Wang K, Shao C, Li X, et al.Hierarchical heterostructures of P-type BiOCl nanosheets on electrospun N-type TiO2 nanofibers with enhanced photocatalytic activity[J].Catalysis Communications, 2015, 67:6-10.
[10] Warrier V G, Nizam A, Nagaraju G.Highly efficient photocatalytic conversion of amine to amide and degradation of methylene blue using BiOCl-TiO2 nano heterostructures[J].Journal of Inorganic and Organometallic Polymers and Materials, 2020, 30(8):3143-3157.
[11] Dong H, Xiao M, Li J, et al.Construction of H-TiO2/BiOCl heterojunction with improved photocatalytic activity under the visible and near-infrared light[J].Journal of Photochemistry and Photobiology A-Chemistry, 2020, 392:1-28.
[12] Duo F, Wang Y, Fan C, et al.Low temperature one-step synthesis of rutile TiO2/BiOCl composites with enhanced photocatalytic activity[J].Materials Characterization, 2015, 99:8-16.
[13] Sanchez-Rodriguez D, Medrano M G M, Remita H, et al.Photocatalytic properties of BiOCl-TiO2 composites for phenol photodegradation[J].Journal of Environmental Chemical Engineering, 2018, 6(2):1601-1612.
[14] Yang B, Zheng J, Li W, et al.Engineering Z-scheme TiO2-OV-BiOCl via oxygen vacancy for enhanced photocatalytic degradation of imidacloprid[J].Dalton Transactions, 2020, 49(31):11010-11018.
[15] Li R, Luan Q, Dong C, et al.Light-facilitated structure reconstruction on self-optimized photocatalyst TiO2@BiOCl for selectively efficient conversion of CO2 to CH4[J].Applied Catalysis B-Environmental, 2021, 286:1-11.
[16] Wang X, Ni Q, Zeng D, et al.BiOCl/TiO2 heterojunction network with high energy facet exposed for highly efficient photocatalytic degradation of benzene[J].Applied Surface Science, 2017, 396:590-598.
[17] Fu R, Zeng X, Ma L, et al.Enhanced photocatalytic and photoelectrochemical activities of reduced TiO2-x/BiOCl heterojunctions[J].Journal of Power Sources, 2016, 312:12-22.
[18] Song H, Li N, Cui H, et al.Enhanced storage capability and kinetic processes by pores- and hetero-atoms-riched carbon nanobubbles for lithium-ion and sodium-ion batteries anodes[J].Nano Energy, 2014, 4:81-87.
[19] Huang L, Yu Y, Sun D, et al.Molecule assembly of heterostructured TiO2@BiOCl via fenton-like reaction for enhanced solar energy conversion[J].Ceramics International, 2021, 47(8):10716-10723.
[20] Li L, Zhang M, Liu Y, et al.Hierarchical assembly of BiOCl nanosheets onto bicrystalline TiO2 nanofiber:Enhanced photocatalytic activity based on photoinduced interfacial charge transfer[J].Journal of Colloid and Interface Science, 2014, 435:26-33.
[21] Zhou S, Ma D, Cai P, et al.TiO2/Bi2(BDC)3/BiOCl nanoparticles decorated ultrathin nanosheets with excellent photocatalytic reaction activity and selectivity[J].Materials Research Bulletin, 2014, 60:64-71.
[22] Shoja A, Habibi-Yangjeh A, Mousavi M, et al.BiOBr and BiOCl decorated on TiO2 QDs:Impressively increased photocatalytic performance for the degradation of pollutants under visible light[J].Advanced Powder Technology, 2020, 31(8):3582-3596.
[23] Jing Z, Dai X, Xian X, et al.Novel ternary heterogeneous reduction graphene oxide (RGO)/BiOCl/TiO2 nanocomposites for enhanced adsorption and visible-light induced photocatalytic activity toward organic contaminants[J].Materials, 2020, 13(11):25-29.
[24] Shakeel M, Zhang X, Yasin G, et al.Fabrication of amorphous BiOCl/TiO2-C3N4 heterostructure for efficient water oxidation[J].Chemistryselect, 2019, 4(28):8277-8282.
[25] Wang B, de Godoi F C, Zheng S, et al.Enhanced photocatalytic properties of reusable TiO2-loaded natural porous minerals in dye wastewater purification[J].Powder Technology, 2016, 302:426-433.
[26] Hu X, Sun Z, Song J, et al.Synthesis of novel ternary heterogeneous BiOCl/TiO2/sepiolite composite with enhanced visible-light-induced photocatalytic activity towards tetracycline[J].Journal of Colloid and Interface Science, 2019, 533:238-250.
[27] Zhang L, Zhang J, Zhang W, et al.Photocatalytic activity of attapulgite-BiOCl-TiO2 toward degradation of methyl orange under UV and visible light irradiation[J].Materials Research Bulletin, 2015, 66:109-114.
[28] Tan Y, Li C, Sun Z, et al.Ternary structural assembly of BiOCl/TiO2/clinoptilolite composite:Study of coupled mechanism and photocatalytic performance[J].Journal of Colloid and Interface Science, 2020, 564:143-154.
[29] Zhou P, Shen Y, Zhao S, et al.Synthesis of Clinoptilolite-supported BiOCl/TiO2 heterojunction nanocomposites with highly-enhanced photocatalytic activity for the complete degradation of xanthates under visible light[J].Chemical Engineering Journal, 2021, 407:1-45.
[30] Liu Q, Ma J, Wang K, et al.BiOCl and TiO2 deposited on exfoliated ZnCr-LDH to enhance visible-light photocatalytic decolorization of rhodamine B[J].Ceramics International, 2017, 43(7):5751-5758.
[1] 唐石云, 杨建云, 张翼鹏, 李振杰, 罗智方, 陈永娟. 烟梗丝模板合成Ni掺杂TiO2及其光催化降解罗丹明B的研究[J]. 现代化工, 2022, 42(S2): 137-141.
[2] 乔鹏, 代曼, 刘颖, 王雪芹. 不同结构TiO2纳米材料的制备及在光解水制氢方向的研究进展[J]. 现代化工, 2022, 42(9): 36-39,45.
[3] 孙德武, 宋沐遥, 李佳昕, 关壬铨, 高鑫椿, 翟宏菊. 钛酸钙纳米材料的改性及在光催化领域的研究进展[J]. 现代化工, 2022, 42(9): 51-54.
[4] 郑丹, 贾琳, 黄廷洪. 基于萘二胺多氟聚合物颗粒的制备及吸附性能研究[J]. 现代化工, 2022, 42(8): 161-166.
[5] 令新科, 钱功明. 紫外光诱导法合成纳米银/羟基磷灰石及其性能研究[J]. 现代化工, 2022, 42(8): 199-203.
[6] 欧阳园园, 李三喜, 蒋大富, 王松, Otitoju Tunmise Ayode. APTES-TiO2-B4C/PVDF膜的制备及其光降解有机染料的性能研究[J]. 现代化工, 2022, 42(8): 204-208.
[7] 李大玉, 张文超, 周慧, 沈明. 铋系半导体光催化材料的研究进展[J]. 现代化工, 2022, 42(7): 32-36.
[8] 田浩然, 刘福跃, 邰月辉, 刘章沛, 杨修业, 刘崎峰. 铋系异质结光催化剂的研究进展[J]. 现代化工, 2022, 42(7): 42-45.
[9] 张筱榕. ZrO2基复合催化剂的应用研究进展[J]. 现代化工, 2022, 42(7): 65-69.
[10] 刘福跃, 田浩然, 刘崎峰, 刘章沛, 韩博宇, 邰月辉. 形貌可控的C掺杂BiOBr高效光催化剂的制备及其对抗生素废水降解的性能研究[J]. 现代化工, 2022, 42(7): 103-109.
[11] 刘霞, 姬咏琪, 李旭明, 王世凤, 田成, 石会龙. NH2-MIL-101(Fe)/BiVO4异质结光催化剂还原水中硝酸盐性能研究[J]. 现代化工, 2022, 42(7): 195-200.
[12] 田浩然, 刘福跃, 邰月辉, 韩博宇, 付威, 刘崎峰. 基于异质结的Bi2WO6/Bi2O2CO3复合光催化剂的制备及其在抗生素废水处理中的性能研究[J]. 现代化工, 2022, 42(5): 109-113,120.
[13] 许荣杰, 吴潘, 何坚, 刘长军, 蒋炜. Z型异质结C3N4/WO3光催化还原处理含Cr (Ⅵ)废水的研究[J]. 现代化工, 2022, 42(5): 114-120.
[14] 王雯, 黄祖强, 张燕娟, 胡华宇. 纤维素/海藻酸铁@聚多巴胺复合凝胶球的制备及其光催化还原Cr6+的性能[J]. 现代化工, 2022, 42(5): 126-131.
[15] 袁钊, 刘忠久, 蔡铁强, 李高旗, 潘自琼, 郭卓. Cd0.5Zn0.5S/N-g-C3N4复合催化剂的制备及其可见光催化性能的研究[J]. 现代化工, 2022, 42(5): 218-223.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备09035943号-37
版权所有 © 《现代化工》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn