Please wait a minute...
 
最新公告: 重要提醒:骗子冒充编辑部要求加作者微信,谨防上当!   关于暑假、寒假期间版面费发票及期刊样刊延迟邮寄的通知    
现代化工  2022, Vol. 42 Issue (10): 175-179,184    DOI: 10.16606/j.cnki.issn0253-4320.2022.10.034
  科研与开发 本期目录 | 过刊浏览 | 高级检索 |
CH4/H2O等离子体催化甲烷水蒸气重整直接制甲醇的研究
郝英姿, 刘瑞, 易颜辉
大连理工大学化工学院, 精细化工国家重点实验室, 辽宁 大连 116024
Plasma catalyzed direct synthesis of methanol by steam reforming of methane
HAO Ying-zi, LIU Rui, YI Yan-hui
State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
下载:  PDF (2141KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 两步法甲烷水蒸气重整生产甲醇的高温、高压操作条件导致高能耗和高成本。利用线-筒式介质阻挡放电反应器,通过等离子体与Cu基催化剂耦合实现了甲烷水蒸气重整一步制甲醇,并考察了CH4/H2O/Ar等离子体反应条件和Cu/SiO2催化剂的催化性能。结果表明,在最佳反应温度为170℃、最优CH4/H2O摩尔比为1∶4、负载量为5%的Cu/SiO2为催化剂时,甲烷的转化率达到6.4%,甲醇的选择性达到58.8%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郝英姿
刘瑞
易颜辉
关键词:  甲烷转化  水蒸气重整  甲醇  介质阻挡放电等离子体  Cu基催化剂    
Abstract: Industrial production of methanol from methane is commonly achieved by a two-step process,which means high energy consumption and high cost.A one-step method for methane steam reforming to methanol is developed by coupling plasma with Cu-based catalyst using a coaxial dielectric barrier discharge reactor.The reaction conditions for CH4/H2O/Ar over plasma and the catalytic performance of Cu/SiO2 catalyst are investigated.Experimental results show that the optimum reaction temperature is 170℃,and the best CH4/H2O molar ratio is 1∶4.Under the optimized reaction conditions,the conversion of methane can achieve 6.4% and the selectivity of methanol can reach 58.8% when employing Cu/SiO2 catalyst with a loading of 5 wt%.
Key words:  methane conversion    steam reforming    methanol    dielectric barrier discharge plasma    copper-based catalyst
收稿日期:  2021-10-23      修回日期:  2022-08-01          
ZTFLH:  O643.3  
基金资助: 中国石油创新基金项目(2108D-5007-0501);中央高校基本科研业务费项目(DUT21JC40)
通讯作者:  易颜辉(1984-),男,博士,副教授,研究方向为多相催化和等离子体催化在能源、环境及精细化学品合成等领域的应用,通讯联系人,yiyanhui@dlut.edu.cn。    E-mail:  yiyanhui@dlut.edu.cn
作者简介:  郝英姿(1997-),女,硕士研究生,研究方向为等离子体催化甲烷转化,1973155715@qq.com
引用本文:    
郝英姿, 刘瑞, 易颜辉. CH4/H2O等离子体催化甲烷水蒸气重整直接制甲醇的研究[J]. 现代化工, 2022, 42(10): 175-179,184.
HAO Ying-zi, LIU Rui, YI Yan-hui. Plasma catalyzed direct synthesis of methanol by steam reforming of methane. Modern Chemical Industry, 2022, 42(10): 175-179,184.
链接本文:  
https://www.xdhg.com.cn/CN/10.16606/j.cnki.issn0253-4320.2022.10.034  或          https://www.xdhg.com.cn/CN/Y2022/V42/I10/175
[1] Gunsalus N J,Koppaka A,Park S H, et al .Homogeneous functionalization of methane[J].Chemical Reviews,2017,117(13):8521-8573.
[2] Caballero A,Perez P J.Methane as raw material in synthetic chemistry:The final frontier[J].Chem Soc Rev,2013,42(23):8809-8820.
[3] Ravi M,Ranocchiari M,Van Bokhoven J A.The direct catalytic oxidation of methane to methanol-a critical assessment[J].Angew Chem Int Ed,2017,56(52),16464-16483.
[4] Periana R A,Taube D J,Evitt E R, et al .A Mercury-catalyzed,high-yield system for the oxidation of methane to methanol[J].Science,1993,259(5093):340-343.
[5] Agarwal N,Freakley S J,McVicker R U, et al .Aqueous Au-Pd colloids catalyze selective CH4 oxidation to CH3OH with O2 under mild conditions[J].Science,2017,358(6360):223-227.
[6] Ab Rahim M H,Forde M M,Jenkins R L, et al .Oxidation of methane to methanol with hydrogen peroxide using supported gold-palladium alloy nanoparticles[J].Angew Chem Int Ed,2013,52(4):1280-1284.
[7] Williams C,Carter J H,Dummer N F, et al .Selective oxidation of methane to methanol using supported AuPd catalysts prepared by stabilizer-free sol-immobilization[J].ACS Catalysis,2018,8(3):2567-2576.
[8] Kesavan L,Tiruvalam R,Ab Rahim M H, et al .Solvent-free oxidation of primary carbon-hydregen bonds in toluene using Au-Pd alloy nanoparticles[J].Science,2011,331(6014):195-199.
[9] Serra-Maia R,Michel F M,Kang Y J, et al .Decomposition of hydrogen peroxide catalyzed by AuPd nanocatalysts during methane oxidation to methanol[J].ACS Catal,2020,10(9):5115-5123.
[10] Jin Z,Wang L,Zuidema E, et al .Hydrophobic zeolite modification for in situ peroxide formation in methane oxidation to methanol[J].Science,2020,367(6474):193-197.
[11] Rosenzweig A C,Frederick C A,Lippard S J, et al .Crystal structure of a bacterial non-haem iron hydroxylase that catalyses the biological oxidation of methane[J].Nature,1993,366(6455):537-543.
[12] Tomkins P,Ranocchiari M,van Bokhoven J A.Direct conversion of methane to methanol under mild conditions over Cu-zeolites and beyond[J].Acc Chem Res,2017,50(2):418-425.
[13] Tomkins P,Mansouri A,Bozbag S E, et al .Isothermal cyclic conversion of methane into methanol over copper-exchanged zeolite at low temperature[J].Angew Chem Int Ed,2016,55(18):5467-5471.
[14] Sushkevich V L,Palagin D,Van Bokhoven J A.The effect of the active-site structure on the activity of copper mordenite in the aerobic and anaerobic conversion of methane into methanol[J].Angew Chem Int Ed,2018,57(29):8906-8910.
[15] Narsimhan K,Iyoki K,Dinh K, et al .Catalytic oxidation of methane into methanol over copper-exchanged zeolites with oxygen at low temperature[J].ACS Cent Sci,2016,2(6):424-429.
[16] Wulfer M J,Teketel S,Ipek B, et al .Conversion of methane to methanol on copper containing small-pore zeolites and zeotypes[J].Chem Commun,2015,51(21):4447-4450.
[17] Mahyuddin M H,Tanaka T,Staykov A, et al .Methane partial oxidation over [Cu2(μ-O)]2+ and [Cu3(μ-O)3]2+ active species in large-pore zeolites[J].ACS Catal,2018,8(2):1500-1509.
[18] Snyder B E,Vanelderen P,Bols M L, et al .The active site of low-temperature methane hydroxylation in iron-containing zeolites[J].Nature,2016,536(7616):317-21.
[19] Zhao G Y,Adesina A,Kennedy E, et al .Formation of surface oxygen species and the conversion of methane to value-added products with N2O as oxidant over Fe-ferrierite catalysts[J].ACS Catal,2020,10(2):1406-1416.
[20] Snyder B E R,Bols M L,Rhoda H M, et al .Cage effects control the mechanism of methane hydroxylation in zeolites[J].Science,2021,373(6552):327-331.
[21] Sushkevich V L,Palagin D,Ranocchiari M, et al .Selective anaerobic oxidation of methane enables direct synthesis of methanol[J].Science,2017,356(6337):523-527.
[22] Lee S H,Kang J K,Park E D.Continuous methanol synthesis directly from methane and steam over Cu(Ⅱ)-exchanged mordenite[J].Korean J Chem Eng,2018,35(11):2145-2149.
[23] Liu Z Y,Huang E,Orozco I, et al .Water-promoted interfacial pathways in methane oxidation to methanol on a CeO2-Cu2O catalyst[J].Science,2020,368(6490):513-517.
[24] Koishybay A,Shantz D F.Water is the oxygen source for methanol produced in partial oxidation of methane in a flow reactor over Cu-SSZ-13[J].J Am Chem Soc,2020,142(28):11962-11966.
[25] Jeong Y R,Jung H,Kang J, et al .Continuous synthesis of methanol from methane and steam over copper-mordenite[J].ACS Catal,2021,11(3):1065-1070.
[26] Sun L L,Wang Y,Wang C M, et al .Water-involved methane-selective catalytic oxidation by dioxygen over copper zeolites[J].Chem,2021,7(6):1557-1568.
[27] Tsuchiya T,Iizuka S J.Conversion of methane to methanol by a low-pressure steam plasma[J].Environ Eng Technol,2013,2(3):35-39.
[28] Zhang H T,Liu Q.Kinetic study of nonequilibrium plasma-assisted methane steam reforming[J].Mathematical Problems in Engineering,2014,2014:1-10.
[29] Neyts E C,Osrrikov K,Sunkara M K, et al .plasma catalysis:Synergistic effects at the nanoscale[J].Chem Rev,2015,115,(24):13408-13446.
[30] EI-Shafie M,Kambara S,Hayakawa Y.One-dimensional simulation of hydrogen production kinetic models by water vapor plasmolysis in a DBD plate reactor[J].Journal of Theoretical and Applied Physics,2020,14(2):181-194.
[31] Du H,Ma X Y,Yan P F, et al .Catalytic furfural hydrogenation to furfuryl alcohol over Cu/SiO2 catalysts:A comparative study of the preparation methods[J].Fuel Processing Technology,2019,193:221-231.
[32] Liu J J,He P,Wang L G, et al .An efficient and stable Cu/SiO2 catalyst for the syntheses of ethylene glycol and methanol via chemoselective hydrogenation of ethylene carbonate[J].Chinese Journal of Catalysis,2018,39:1283-1293.
[1] 尹民, 陆平, 张豪豪, 李海, 周准, 华超. 萃取精馏分离甲醇-三甲氧基硅烷的动态特性研究[J]. 现代化工, 2022, 42(9): 205-213.
[2] 张和平. 双碳背景下新能源技术发展现状及展望[J]. 现代化工, 2022, 42(8): 7-9.
[3] 陈洪派, 商辉, 孔志媛. 甲醇制烯烃工艺技术发展现状[J]. 现代化工, 2022, 42(8): 80-84,88.
[4] 张筱榕. ZrO2基复合催化剂的应用研究进展[J]. 现代化工, 2022, 42(7): 65-69.
[5] 王园园, 董省身, 宋华, 张梅, 孙兴龙, 王雪芹, 王文艺, 朱天汉. Co3O4/HY选择性催化苯甲醇氧化合成苯甲醛的研究[J]. 现代化工, 2022, 42(7): 114-119.
[6] 顾英. 甲醇装置串压风险分析及解决方案[J]. 现代化工, 2022, 42(7): 246-250.
[7] 蒋晓霄, 丁金伟, 洪凯伦, 黄江, 程磊. 超重力精馏与反应耦合回收甲醇[J]. 现代化工, 2022, 42(6): 225-226.
[8] 朱伟平. 甲醇制烯烃技术开发进展[J]. 现代化工, 2022, 42(4): 82-86,92.
[9] 李昊洲, 李燕, 张述伟. 2种不同荒煤气衍生气中酸性气体成分脱除的低温甲醇洗工艺开发[J]. 现代化工, 2022, 42(4): 237-244.
[10] 王彤, 陈康成, 黎汉生. 金属有机框架及其衍生物在甲醇电催化氧化中的应用研究进展[J]. 现代化工, 2022, 42(2): 51-56.
[11] 陈诗瑶, 申峻, 王玉高, 牛艳霞, 刘刚, 盛清涛. 甲醇制芳烃反应及生产工艺研究进展[J]. 现代化工, 2022, 42(2): 57-60,67.
[12] 谢锦印, 田甜, 张丹. Si-TiO2负载V2O5催化甲醇一步氧化法制二甲氧基甲烷的研究[J]. 现代化工, 2022, 42(1): 136-139.
[13] 陈敏生, 刘杰, 朱涛. 车载甲醇水蒸气重整制氢技术研究进展[J]. 现代化工, 2021, 41(S1): 36-41.
[14] 石胜启. 甲醇制烯烃反应气中带蜡原因分析及解决措施[J]. 现代化工, 2021, 41(S1): 312-314.
[15] 张伟静, 张雷. 隔壁塔萃取精馏分离丙酸甲酯-甲醇的模拟与优化[J]. 现代化工, 2021, 41(S1): 315-318.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备09035943号-37
版权所有 © 《现代化工》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn