Please wait a minute...
 
最新公告: 重要提醒:骗子冒充编辑部要求加作者微信,谨防上当!   关于暑假、寒假期间版面费发票及期刊样刊延迟邮寄的通知    
现代化工  2022, Vol. 42 Issue (10): 120-125    DOI: 10.16606/j.cnki.issn0253-4320.2022.10.023
  科研与开发 本期目录 | 过刊浏览 | 高级检索 |
DBD等离子体协同催化降解甲醛气体及光谱诊断研究
邢倩云, 李茹, 杨鑫, 梁煜, 冯燕
西安工程大学环境与化学工程学院, 陕西 西安 710048
DBD plasma co-catalytic degradation of formaldehyde gas and spectral diagnosis
XING Qian-yun, LI Ru, YANG Xin, LIANG Yu, FENG Yan
School of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an 710048, China
下载:  PDF (2525KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用介质阻挡放电(DBD)等离子体协同催化降解甲醛气体,考察了放电功率、初始质量浓度、气体流量对甲醛的降解效率、能量效率和生成的臭氧(O3)质量浓度的影响。结果表明,在初始质量浓度为41.12 mg/m3、气体体积流量为 0.7 L/min、放电功率为30 W的最佳反应条件下加入Mn-TiO2/γ-Al2O3催化剂后,甲醛的降解效率和反应器的能量效率分别高达90.71%和0.052 g/(kW·h),O3质量浓度下降至121.957 mg/m3
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
邢倩云
李茹
杨鑫
梁煜
冯燕
关键词:  介质阻挡放电(DBD)  甲醛气体  催化剂  等离子体诊断    
Abstract: Dielectric barrier discharge (DBD) plasma is used to co-catalyze the degradation of formaldehyde gas,and the effects of reaction conditions on the degradation efficiency of formaldehyde,the energy efficiency of reactor and the mass concentration of ozone formed are analyzed.The optimal reaction conditions are determined as follows:the initial concentration is 41.12 mg·m-3,the gas volume flow is 0.7 L·min-1,and the discharge power is 30 W.Under these conditions and over Mn-TiO2/γ-Al2O3 catalyst,the degradation efficiency of formaldehyde reaches as high as 90.71%,the energy efficiency of the reactor reaches 0.052 g·(kW·h)-1,while the mass concentration of O3 generated drops to 121.957 mg·m-3.
Key words:  dielectric barrier discharge (DBD)    formaldehyde gas    catalyst    plasma diagnosis
收稿日期:  2021-10-23      修回日期:  2022-08-07          
ZTFLH:  X511  
基金资助: 国家自然科学基金资助项目(11105102)
通讯作者:  李茹(1972-),女,博士,教授,主要研究方向为大气污染控制技术,通讯联系人,13228016549,xjliru@163.com。    E-mail:  xjliru@163.com
作者简介:  邢倩云(1995-),女,硕士研究生,主要研究方向为低温等离子体降解VOCs,1285735217@qq.com
引用本文:    
邢倩云, 李茹, 杨鑫, 梁煜, 冯燕. DBD等离子体协同催化降解甲醛气体及光谱诊断研究[J]. 现代化工, 2022, 42(10): 120-125.
XING Qian-yun, LI Ru, YANG Xin, LIANG Yu, FENG Yan. DBD plasma co-catalytic degradation of formaldehyde gas and spectral diagnosis. Modern Chemical Industry, 2022, 42(10): 120-125.
链接本文:  
https://www.xdhg.com.cn/CN/10.16606/j.cnki.issn0253-4320.2022.10.023  或          https://www.xdhg.com.cn/CN/Y2022/V42/I10/120
[1] Huang M,Li Y,Li M, et al .Active site directed tandem catalysis on single platinum nanoparticles for efficient and stable oxidation of formaldehyde at room temperature[J].Environmental Science and Technology,2019,53(7):3610-3619.
[2] Wang W,Wang H,Zhu T, et al .Removal of gas phase low-concentration toluene over Mn,Ag and Ce modified HZSM-5 catalysts by periodical operation of adsorption and non-thermal plasma regeneration[J].Journal of Hazardous Materials,2015,292(15):70-78.
[3] Xiao Z A,Br A,Yx A, et al .Catalytic oxidation of toluene in air using manganese incorporated catalyst by non-thermal plasma system[J].Separation and Purification Technology,2020,257:117973.
[4] Najafpoor A A,Jonidi Ja Fa Ri A,Hosseinzadeh A, et al .Optimization of non-thermal plasma efficiency in the simultaneous elimination of benzene,toluene,ethyl-benzene,and xylene from polluted airstreams using response surface methodology[J].Environmental Science & Pollution Research,2018,25(1):233-241.
[5] Jiang N,Lu N,Shang K, et al .Innovative approachfor benzene degradation using hybrid surface/packed-bed discharge[J].Plasmas Environ Sci Technol,2013,47(17):9898-9903.
[6] Roland U,Holzer F,Kopinke F D.Improved oxidation of airpollutants in a non-thermal plasma[J].Catalysis Today,2002,73(3-4):315-323.
[7] Zhu R,Mao Y,Jiang L, et al .Performance of chlorobenzene removal in a nonthermal plasma catalysis reactor and evaluation of its byproducts[J].Chemical Engineering Journal,2015,279:463-471.
[8] Sudhakaran M S P,Trinh H Q,Karuppiah J, et al .Plasma catalytic removal of p-xylene from air stream using γ -Al2O3 supported manganese catalyst[J].Topics in Catalysis,2017,60(12/14):944-954.
[9] Li Y,Fan Z,Shi J, et al .Post plasma-catalysis for VOCs degradation over different phase structure MnO2 catalysts[J].Chem Eng J,2015,241:251-258.
[10] 赵亚飞,叶凯,庄烨,等.锰基催化剂协同等离子降解VOCs研究进展[J].化工进展,2020,39(S2):180-189.
[11] 董冰岩,施志勇,何俊文,等.脉冲放电等离子体协同Mn/TiO2-分子筛,Fe/TiO2-分子筛,Cu/TiO2-分子筛催化剂降解甲醛[J].化工进展,2015,(9):3337-3344.
[12] Naydenov A,Mehandjiev D.Complete oxidation of benzene on manganese dioxide by ozone[J].Appl Catal,1993,97:17-22.
[13] Wang C,Ma J,Liu F, et al .The effects of Mn2+ precursors on the structure and czone decomposition activity of cryptomelane-type manganese oxide (OMS-2) catalysts[J].Phys Chem C,2015,119:23119-23126.
[14] Yao X,Zhang J,Liang X, et al .Plasma-catalytic removal of toluene over the supported manganese oxides in DBD reactor:Effect of the structure of zeolites support[J].Chemosphere,2018,208:922-930.
[15] 张琪,李茹,李秋怡,等.介质阻挡放电等离子体降解甲苯废气[J].西安工程大学学报,2018,32(1):62-66.
[16] 董冰岩,甘青青,孙宇,等.高压脉冲放电协同复合型催化剂去除甲醛的实验[J].电工技术学报,2017,32(8):108-113.
[17] 赵德志,丁天英,李小松,等.室温MnO<i>x 上O3氧化脱除空气中甲醛[J].催化学报,2012,33(3):396-401.
[18] Kim H H,Ogata A,Futamura S, et al .Atmospheric plasma-driven catalysis for the low temperature decomposition of dilute aromatic compounds[J].Journal of Physics D Applied Physics,2015,38(8):1292-1300.
[19] Chen J H,Davidson J H.Ozone production in the positive DC corona discharge:Model and comparison to experiments[J].Plasma Chemistry & Plasma Processing,22(4):495-522.
[20] 宋志杰,徐浩军,魏小龙,等.低压氩气电感耦合等离子体特性分析及光谱诊断[J].光谱学与光谱分析,2019,39(4):1242-1246.
[21] Sun M,Wu Y,Li J, et al .Diagnosis of OH radical by optical emission spectroscopy in atmospheric pressure unsaturated humid air corona discharge and its implication to desulphurization of flue gas[J].Plasma Chemistry & Plasma Processing,2005,25(1):31-40.
[1] 马静, 方子昂, 林静, 马子然, 王红妍, 王宝冬, 刘爽. 耐高温Pt@TiO2催化剂的制备及其催化燃烧丙烷、丙烯性能研究[J]. 现代化工, 2022, 42(9): 120-124.
[2] 王逸飞, 王亚涛, 王新承, 马小丰, 李翠清, 王虹, 宋永吉. SiO2气凝胶负载过渡金属氧化物催化分解N2O的研究[J]. 现代化工, 2022, 42(9): 134-140.
[3] 孙中华, 吴中, 刘经伟, 何天赐, 徐骏, 钱俊峰, 何明阳. Al改性Cu/SiO2催化剂催化二甘醇脱氢制对二氧环己酮的研究[J]. 现代化工, 2022, 42(9): 175-180.
[4] 向家兴, 谭亚南, 庞胜翠, 唐源. 双金属改性催化剂的制备及甲醇甲苯侧链烷基化反应性能研究[J]. 现代化工, 2022, 42(9): 181-185,189.
[5] 金吉海, 焦祖凯, 宋君辉, 甄涛, 严金龙, 张铎, 刘丽芝. ZQC-25催化剂在加氢脱酸装置上的工业应用[J]. 现代化工, 2022, 42(9): 231-234.
[6] 陈亚莉, 袁铭霞, 朱贤, 晏金灿, 薛原, 韩生. 多相纳米催化剂制备生物柴油的研究进展[J]. 现代化工, 2022, 42(8): 22-26.
[7] 张超, 郝敏彤, 孙维, 冯彬, 朱丽娜. 碳基材料脱硝催化剂的研究进展[J]. 现代化工, 2022, 42(8): 70-74.
[8] 宋青明, 许蓉, 李闯, 李军峰, 杨红军, 陈建. 连续流微反应器快速合成邻甲基环己基醋酸酯的研究[J]. 现代化工, 2022, 42(8): 96-99.
[9] 沈蒙莎, 程永兵, 黄鸿坤, 徐雨, 樊俊杰, 徐文媛, 陈曦, 廖梦垠. NaAlCl4/γ-Al2O3@ZSM-5空心微球核壳复盐催化剂的制备及歧化性能研究[J]. 现代化工, 2022, 42(8): 100-104,112.
[10] 王淼, 余钊卓, 刘香君, 徐芙清, 王俊淇. 石墨烯基材料在生物质催化转化中的应用[J]. 现代化工, 2022, 42(7): 46-50.
[11] 耿新国, 杨卫亚, 隋宝宽, 王刚. 碳基载体石油馏分加氢脱硫催化剂研究进展[J]. 现代化工, 2022, 42(7): 75-78,83.
[12] 宋卫余, 杨坤, 赖自强, 宋少佳. Mo基、W基催化剂的制备及其丙烷脱氢性能研究[J]. 现代化工, 2022, 42(7): 120-124,129.
[13] 张蕊, 王思月, 洪耀华, 马星宇, 姜晓乐. 二维沸石咪唑骨架有效催化二氧化碳电还原的研究[J]. 现代化工, 2022, 42(7): 125-129.
[14] 田鑫, 李欣, 王薇, 吕鹏, 马保军. Co/Si/Mo/Ni/Al2O3催化剂对汽油加氢脱硫性能的影响[J]. 现代化工, 2022, 42(7): 130-134,140.
[15] 张以民, 刘洋, 陈侣, 张雄志. 超分子水凝胶原位制备纳米镍及其在对硝基苯酚催化还原中的应用[J]. 现代化工, 2022, 42(6): 124-128,134.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备09035943号-37
版权所有 © 《现代化工》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn