Please wait a minute...
 
最新公告: 重要提醒:骗子冒充编辑部要求加作者微信,谨防上当!   关于暑假、寒假期间版面费发票及期刊样刊延迟邮寄的通知    
现代化工  2022, Vol. 42 Issue (10): 108-113    DOI: 10.16606/j.cnki.issn0253-4320.2022.10.021
  科研与开发 本期目录 | 过刊浏览 | 高级检索 |
金属盐改性凹土的制备及催化竹粉制备糠醛和5-羟甲基糠醛的研究
毕浩然1,2, 张宇1,2, 黄玲玲1,2, 刘玉环1,2, 付桂明1,2, 彭红1,2
1. 南昌大学生物质转化教育部工程研究中心, 江西 南昌 330047;
2. 南昌大学食品科学与技术国家重点实验室, 江西 南昌 330047
Preparation of metal salts modified attapulgite and its application for catalytic production of furfural and 5-hydroxymethyl furfural from bamboo powder
BI Hao-ran1,2, ZHANG Yu1,2, HUANG Ling-ling1,2, LIU Yu-huan1,2, FU Gui-ming1,2, PENG Hong1,2
1. Engineering Research Center for Biomass Conversion of Ministry of Education, Nanchang University, Nanchang 330047, China;
2. State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
下载:  PDF (1650KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 以被离子液体1-丁基-3-甲基咪唑乙酸盐(BmimAc)预处理的竹粉为原料,在水/甲基异丁基酮(MIBK)双相体系中微波加热下制备糠醛(FF)和5-羟甲基糠醛(HMF)。考察了8种金属盐(ZnCl2、FeCl2、SnCl2、CrCl3、FeCl3、AlCl3、Fe2(SO4)3、Al2(SO4)3)的催化活性,并将催化活性最强的金属盐(MS)负载到凹凸棒土(ATP)上获得固体酸催化剂,对制备的固体酸催化剂进行表征并评估其催化性能。结果表明,在相同反应条件下FeCl3的催化活性最高,FF和HMF的产率分别达到78.96%和35.04%;与ATP相比,经FeCl3和H2SO4共同改性后获得的ATP-S-Fe固体催化剂的比表面积、孔径以及酸强度都发生了不同程度的增大;在相同反应条件下,ATP-S和ATP-S-Fe的催化活性相当,且均稍弱于1% H2SO4
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
毕浩然
张宇
黄玲玲
刘玉环
付桂明
彭红
关键词:  竹粉  FF  5-羟甲基FF  改性凹土  减压蒸馏    
Abstract: Furfural (FF) and 5-hydroxymethyl furfural (HMF) are prepared from bamboo powder pretreated with 1-butyl-3-methylimidazole acetate (BmimAc) ionic liquid under microwave heating in water/methyl isobutyl ketone (MIBK) two-phase medium.The catalytic activities of eight kinds of metal salts,including ZnCl2,FeCl2,SnCl2,CrCl3,FeCl3,AlCl3,Fe2(SO4)3,and Al2(SO4)3,are compared and evaluated.The metal salt with the strongest catalytic activity is loaded onto attapulgite (ATP) to obtain a solid acidic catalyst,which is then characterized and its catalytic performance is evaluated.It is shown that the highest yields of FF (78.96%) and HMF (35.04%) are obtained when FeCl3 is used as the catalyst under the same reaction conditions.Compared with ATP,the specific surface area,pore size,and acidic strength of ATP-S-Fe obtained through modification of ATP by FeCl3 and H2SO4 together increase.Under the same reaction conditions,the catalytic activities of ATP-S and ATP-S-Fe are almost equivalent,and both slightly weaker than that of 1 wt% H2SO4.
Key words:  bamboo powder    furfural    5-hydroxymethyl furfural    modified attapulgite    vacuum distillation
收稿日期:  2021-10-16      修回日期:  2022-07-29          
ZTFLH:  TQ251.11  
基金资助: 国家自然科学基金项目(22068025);江西省研究生创新专项资金项目(YC2020-S058)
通讯作者:  彭红(1978-),女,博士,研究员,博士生导师,研究方向为木质纤维生物质资源的高值化利用,通讯联系人,penghong@ncu.edu.cn。    E-mail:  penghong@ncu.edu.cn
作者简介:  毕浩然(1997-),男,硕士生,研究方向为木质纤维生物质资源的高值化利用,764343322@qq.com
引用本文:    
毕浩然, 张宇, 黄玲玲, 刘玉环, 付桂明, 彭红. 金属盐改性凹土的制备及催化竹粉制备糠醛和5-羟甲基糠醛的研究[J]. 现代化工, 2022, 42(10): 108-113.
BI Hao-ran, ZHANG Yu, HUANG Ling-ling, LIU Yu-huan, FU Gui-ming, PENG Hong. Preparation of metal salts modified attapulgite and its application for catalytic production of furfural and 5-hydroxymethyl furfural from bamboo powder. Modern Chemical Industry, 2022, 42(10): 108-113.
链接本文:  
https://www.xdhg.com.cn/CN/10.16606/j.cnki.issn0253-4320.2022.10.021  或          https://www.xdhg.com.cn/CN/Y2022/V42/I10/108
[1] Singh N,Singhania R R,Nigam P S, et al .Global status of lignocellulosic biorefinery:Challenges and perspectives[J].Bioresource Technology,2022,344:126415.
[2] Saravanan A,Senthil Kumar P,Jeevanantham S, et al .Recent advances and sustainable development of biofuels production from lignocellulosic biomass[J].Bioresource Technology,2022,344:126203.
[3] Yook S D,Kim G,Gong G, et al .High-yield lipid production from lignocellulosic biomass using engineered xylose-utilizing Yarrowia lipolytica [J].GCB-Bioenergy,2020,12:670-679.
[4] Guo W,Zhang Z,Hacking J, et al .Selective fructose dehydration to 5-hydroxymethylfurfural from a fructose-glucose mixture over a sulfuric acid catalyst in a biphasic system:Experimental study and kinetic modelling[J].Chemical Engineering Journal,2021,409:128182.
[5] Lopes M,Dussan K,Leahy J J.Enhancing the conversion of D-xylose into furfural at low temperatures using chloride salts as co-catalysts:Catalytic combination of AlCl3 and formic acid[J].Chemical Engineering Journal,2017,323:278-286.
[6] Zhang T W,Li W Z,Xiao H N, et al .Recent progress in direct production of furfural from lignocellulosic residues and hemicelluloses[J].Bioresource Technology,2022,354:127126.
[7] Tempelman C H L,Oozeerally R,Degirmenci V, et al .Heterogeneous catalysts for the conversion of glucose into 5-hydroxymethyl furfural[J].Catalysts,2021,11(7):861.
[8] Saenluang K,Thivasasith A,Dugkhuntod P, et al .In situ synthesis of Sn-Beta zeolite nanocrystals for glucose to hydroxymethyl furfural (HMF)[J].Catalysts,2020,10:1249.
[9] 石莹莹.凹凸棒土基复合光催化剂的制备及其对水中四环素去除性能的研究[D].南京:南京大学,2017.
[10] 唐玉婷,丁思淳,韩承霖.腐殖酸负载对凹凸棒土吸附Zn(Ⅱ)的影响[J].华南理工大学学报,2022,50(4):110-118.
[11] Lyu X,Botte G G.Investigation of factors that inhibit furfural production using metal chloride catalysts[J].Chemical Engineering Journal,2021,403:126271.
[12] Gagne O C,Hawthorne F C.Empirical Lewis acid strengths for 135 cations bonded to oxygen[J].Acta Crystallographica Section B:Structural Science Crystal Engineering and Materials,2017,73(5):956-961.
[13] 唐玉婷,丁思淳,韩承霖.腐殖酸负载对凹凸棒土吸附Zn(Ⅱ)的影响[J].华南理工大学学报,2022,50(4):110-118.
[14] 李迎春,董良飞,仝驰,等.稀土改性凹凸棒土对低浓度磷的吸附性能[J].环境工程学报,2021,15(10):3214-3222.
[15] Tian H,Shao Y,Liang C, et al .Sulfated attapulgite for catalyzing the conversion of furfuryl alcohol to ethyl levulinate:Impacts of sulfonation on structural transformation and evolution of acidic sites on the catalyst[J].Renewable Energy,2020,162:1576-1586.
[16] Wang Y S,Liang D F,Wang C S, et al .Influence of calcination temperature of Ni/Attapulgite on hydrogen production by steam reforming ethanol[J].Renewable Energy,2020,160:597-611.
[17] 刘昊天,蔡子楠,贾天飞,等.单活性中心氧化还原体系引发N-异丙基丙烯酰胺在凹凸棒土表面的高效接枝聚合[J].高分子材料科学与工程,2020,36(1):20-26.
[18] 陈茂,张鑫,谢伟,等.生物炭/凹凸棒土的制备及对磺胺嘧啶的吸附[J].化工进展,2002,41(5):2623-2635.
[19] 喻红梅,华平,李建华,等.磁性固体酸催化剂Fe3O4/C-SO3H制备及表征[J].日用化学工业,2022,52(4):396-403.
[20] 夏强,向小倩,廖小刚,等.可磁分离回收多孔CoFe2O4的制备及其催化过一硫酸盐降解亚甲基蓝溶液的性能[J].材料工程,2022,50(6):107-116.
[21] 王芳芳,张金銮,朱兆连,等.有序介孔碳负载纳米CuO</i>x 强化吸附2,4-二氯苯酚[J].南京工业大学学报,2022,44(3):328-334.
[22] Zhang L,Zhang D S,Zhang J P, et al .Design of meso-TiO2@MnO</i>x -CeO</i>x /CNTs with a core-shell structure as DeNO</i>x catalysts:Promotion of activity,stability and SO2-tolerance[J].Nanoscale,2013,5(20):9821-9829.
[1] 潘登, 杨乾坚, 常安, 刘磊. 预硫化型FF-66/FC-20催化剂组合应用生产国Ⅵ低凝柴油[J]. 现代化工, 2021, 41(5): 226-229.
[2] 辛丁业, 马晓伟, 郭斐, 焦志锋. FF-66/FC-52组合催化剂在柴油加氢改质装置上的应用[J]. 现代化工, 2021, 41(10): 224-228.
[3] 雷涛, 马福利, 胡建忠, 刘超. FF-36/FC-32A组合催化剂在加氢改质装置上的应用[J]. 现代化工, 2018, 38(7): 183-186.
[4] 李全红, 李建波, 杨效益, 郭朝华, 李萍. 异辛醇聚氧乙烯醚硫酸盐的合成及其性能研究[J]. 现代化工, 2017, 37(9): 131-134,136.
[5] 韩鹏, 赵嵩, 刘远征, 胡庆国, 刘黎明. 考虑椭圆化损伤的大直径薄壁海底管道铺设分析方法研究[J]. 现代化工, 2017, 37(8): 217-221.
[6] 韩鹏, 孔博昌, 李柱国, 刘黎明. 已建海底管道挖沟沉管分析[J]. 现代化工, 2017, 37(7): 210-213.
[7] 蒋定建, 方晓玲, 李飞, 高仁鹏, 薛金召. 常减压蒸馏装置电脱盐优化操作及技术研究[J]. 现代化工, 2017, 37(5): 174-177.
[8] 贾炜冬, 王少波, 杨献奎, 罗建志. 双三氟甲基磺酰亚胺的纯化工艺研究[J]. 现代化工, 2016, 36(8): 170-173.
[9] 张龙, 吴振华, 张英, 高景山, 陈建兵, 宁爱民. 塔河原油减压蒸馏生产高等级道路沥青工业试验[J]. 现代化工, 2016, 36(7): 161-165.
[10] 张龙, 赵云锋, 张英, 刘树华, 张胜中, 王阳峰. 塔河原油减压蒸馏生产高等级道路沥青技术[J]. 现代化工, 2016, 36(6): 153-156.
[11] 张小双, 李肇宇, 李春利. 溶媒废酸水的精馏工艺改造及应用[J]. 现代化工, 2015, 35(11): 152-155.
[12] 方红霞,潘健,吴强林,屈超,周逸风. 竹基剩余物高值转化技术与材料化应用[J]. , 2010, 30(1): 0-0.
[13] 杨光耀. 常减压蒸馏装置的技术改造[J]. , 2004, 24(8): 0-0.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备09035943号-37
版权所有 © 《现代化工》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn