Please wait a minute...
 
最新公告: 重要提醒:骗子冒充编辑部要求加作者微信,谨防上当!   关于暑假、寒假期间版面费发票及期刊样刊延迟邮寄的通知    
现代化工  2022, Vol. 42 Issue (9): 55-59,65    DOI: 10.16606/j.cnki.issn0253-4320.2022.09.012
  技术进展 本期目录 | 过刊浏览 | 高级检索 |
燃煤电厂溶液吸收法碳捕集技术研究进展
叶舣, 赵兴雷
北京低碳清洁能源研究院, 北京 昌平 102211
Review of solution absorption method for carbon capture in coal-fired power plants
YE Yi, ZHAO Xing-lei
National Institute of Clean-and-Low-Carbon Energy, CHN Energy, Beijing 102211, China
下载:  PDF (1350KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 用于燃煤电厂烟道气CO2捕集的技术主要为溶液吸收法,根据吸收剂类型可分为混合胺吸收剂、两相吸收剂、无水吸收剂和离子液体吸收剂。描述了现有溶液吸收法的发展情况以及CO2捕获过程,对不同吸收剂优缺点以及目前工业示范情况进行了综合阐述;重点强调了不同技术路线的工业放大可能性以及捕集成本;最后,指出了未来的发展方向和亟需解决的问题。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
叶舣
赵兴雷
关键词:  碳捕集技术  溶液吸收法  燃煤电厂  二氧化碳  工业应用    
Abstract: Solution absorption methods are the main CO2 capture technologies for flue gas in coal-fired power plants,which can be classified according to the absorbents used,such as mixed amine absorbent,two-phase absorbent,anhydrous absorbent and ionic liquid absorbent.The development situation of current solution absorption methods and CO2 capture process are described,the advantages and disadvantages of different absorbents are analyzed,and current industrial demonstration situation is comprehensively described.The industrial amplification possibility and capture cost of different technical routes are emphasized.The development direction in the future and the problems to be solved urgently are presented.
Key words:  carbon capture technology    solution absorption method    coal-fired power plants    carbon dioxide    industrial application
收稿日期:  2021-08-12      修回日期:  2022-07-02           出版日期:  2022-09-20
ZTFLH:  X511  
基金资助: 国家重点研发计划项目(2017YFB0603301)
通讯作者:  赵兴雷(1977-),男,博士,教授级高级工程师,研究方向为二氧化碳捕集、利用与封存,通讯联系人,xinglei.zhao.c@chnenergy.com.cn    E-mail:  xinglei.zhao.c@chnenergy.com.cn
作者简介:  叶舣(1991-),男,博士,工程师,研究方向为二氧化碳捕集,20051679@chnenergy.com.cn
引用本文:    
叶舣, 赵兴雷. 燃煤电厂溶液吸收法碳捕集技术研究进展[J]. 现代化工, 2022, 42(9): 55-59,65.
YE Yi, ZHAO Xing-lei. Review of solution absorption method for carbon capture in coal-fired power plants. Modern Chemical Industry, 2022, 42(9): 55-59,65.
链接本文:  
https://www.xdhg.com.cn/CN/10.16606/j.cnki.issn0253-4320.2022.09.012  或          https://www.xdhg.com.cn/CN/Y2022/V42/I9/55
[1] Tans P Carbon Dioxide.NASA global climate change[R/OL].NASA Jet Propulsion Laboratory,2020.https://climate.nasa.gov/vital-signs/carbon-dioxide.
[2] 2015 Paris Agreement (COP21)[M/OL].United Nations Framework Convention on Climate Change (UNFCCC).https://unfccc.int/files/essential_background/convention/application/pdf/english_paris_agreement.pdf,2015.
[3] Masson-Delmotte V,Zhai P,P rtner H,et al.Global Warming of 1.5℃[M/OL].An IPCC Special Report:Summary for Policymakers;Intergovernmental Panel on Climate Change (IPCC):Geneva,2018.
[4] 习近平在第七十五届联合国大会一般性辩论上发表重要讲话[N/OL].新华网.[2020-09-22].http://www.xinhuanet.com/politics/leaders/2020-09/22/c_1126527647.htm.
[5] Leung D Y C,Caramanna G,Maroto-Valer M M.An overview of current status of carbon dioxide capture and storage technologies[J].Renewable Sustainable Energy Rev,2014,39:426-443.
[6] Al-Mamoori A,Krishnamurthy A,Rownaghi A A,et al.Carbon capture and utilization update[J].Energy Technol,2017,5(6):834-849.
[7] Tao M,Xu N,Gao J,et al.Phase-change mechanism for capturing CO2 into an environmentally benign nonaqueous solution:a combined NMR and molecular dynamics simulation study[J].Energy & Fuels,2018,33(1):474-483.
[8] Ye Q,Zhu L,Wang X,et al.On the mechanisms of CO2 absorption and desorption with phase transitional solvents[J].International Journal of Greenhouse Gas Control,2017,56:278-288.
[9] Wang M,Joel A S,Ramshaw C,et al.Process intensification for post-combustion CO2 capture with chemical absorption:A critical review[J].Applied Energy,2015,158:275-291.
[10] Zhang S,Du M,Shao P,et al.Carbonic anhydrase enzyme-MOFs composite with a superior catalytic performance to promote CO2 absorption into tertiary amine solution[J].Environmental Science & Technology,2018,52(21):12708-12716.
[11] Stec M,Tatarczuk A,Wiȩcław-Solny L,et al.Demonstration of a post-combustion carbon capture pilot plant using amine-based solvents at the Łaziska Power Plant in Poland[J].Clean Technologies and Environmental Policy,2016,18(1):151-160.
[12] Nwaoha C,Tontiwachwuthikul P,Benamor A.CO2 capture from lime kiln using AMP-DA2MP amine solvent blend:A pilot plant study[J].Journal of Environmental Chemical Engineering,2018,6(6):7102-7110.
[13] Shen Y,Chen H,Wang J,et al.Two-stage interaction performance of CO2 absorption into biphasic solvents:Mechanism analysis,quantum calculation and energy consumption[J].Applied Energy,2020,260:114343.
[14] Raynal L,Bouillon P A,Gomez A,et al.From MEA to demixing solvents and future steps,a roadmap for lowering the cost of post-combustion carbon capture[J].Chemical Engineering Journal,2011,171(3):742-752.
[15] Liu F,Fang M,Dong W,et al.Carbon dioxide absorption in aqueous alkanolamine blends for biphasic solvents screening and evaluation[J].Applied Energy,2019,233:468-477.
[16] Zhou X,Jing G,Lv B,et al.Low-viscosity and efficient regeneration of carbon dioxide capture using a biphasic solvent regulated by 2-amino-2-methyl-1-propanol[J].Applied Energy,2019,235:379-390.
[17] Ye J,Jiang C,Chen H,et al.Novel biphasic solvent with tunable phase separation for CO2 capture:Role of water content in mechanism,kinetics,and energy penalty[J].Environmental Science & Technology,2019,53(8):4470-4479.
[18] Wang R,Jiang L,Li Q,et al.Energy-saving CO2 capture using sulfolane-regulated biphasic solvent[J].Energy,2020,211:118667.
[19] Wang L,Zhang Y,Wang R,et al.Advanced monoethanolamine absorption using sulfolane as a phase splitter for CO2 capture[J].Environmental Science & Technology,2018,52(24):14556-14563.
[20] Qu R,Zhang W,Liu N,et al.Antioil Ag3PO4 nanoparticle/polydopamine/Al2O3 sandwich structure for complex wastewater treatment:Dynamic catalysis under natural light[J].ACS Sustainable Chemistry & Engineering,2018,6(6):8019-8028.
[21] Alkhatib I I I,Pereira L M C,AlHajaj A,et al.Performance of non-aqueous amine hybrid solvents mixtures for CO2 capture:A study using a molecular-based model[J].Journal of CO2 Utilization,2020,35:126-144.
[22] Bihong L,Kexuan Y,Xiaobin Z,et al.2-Amino-2-methyl-1-propanol based non-aqueous absorbent for energy-efficient and non-corrosive carbon dioxide capture[J].Applied Energy,2020,264:114703.
[23] Yang D,Lv M,Chen J.Efficient non-aqueous solvent formed by 2-piperidineethanol and ethylene glycol for CO2 absorption[J].Chemical Communications,2019,55(83):12483-12486.
[24] Barzagli F,Giorgi C,Mani F,et al.Comparative study of CO2 capture by aqueous and nonaqueous 2-amino-2-methyl-1-propanol based absorbents carried out by 13CNMR and enthalpy analysis[J].Industrial & Engineering Chemistry Research,2019,58(11):4364-4373.
[25] Guo H,Li C,Shi X,et al.Nonaqueous amine-based absorbents for energy efficient CO2 capture[J].Applied Energy,2019,239:725-734.
[26] Liu A H,Li J J,Ren B H,et al.Development of high-capacity and water-lean CO2 absorbents by a concise molecular design strategy through viscosity control[J].ChemSusChem,2019,12(23):5164-5171.
[27] Hwang J,Kim J,Lee H W,et al.An experimental based optimization of a novel water lean amine solvent for post combustion CO2 capture process[J].Applied Energy,2019,248:174-184.
[28] Palomar J,Larriba M,Lemus J,et al.Demonstrating the key role of kinetics over thermodynamics in the selection of ionic liquids for CO2 physical absorption.Separation and Purification Technology,2019,213:578-586.
[29] Hospital-Benito D,Lemus J,Moya C,et al.Process analysis overview of ionic liquids on CO2 chemical capture[J].Chemical Engineering Journal,2020,390:124509.
[30] Xiao M,Liu H,Gao H,et al.CO2 capture with hybrid absorbents of low viscosity imidazolium-based ionic liquids and amine[J].Applied Energy,2019,235:311-319.
[1] 卫奕辰, 章丽娜, 贾天博, 张煜昊, 於佳琦, 郑贤敏, 李翠翠, 王东光. 铜基催化剂电催化二氧化碳制乙烯的研究进展[J]. 现代化工, 2022, 42(S2): 34-38.
[2] 蒋廉颖, 邵君娜, 周吉, 华隽石. 燃煤电厂"超低排放"石灰石-石膏法脱硫技术探讨[J]. 现代化工, 2022, 42(S2): 51-53.
[3] 卫奕辰, 张春娥, 宋德斌, 文建军, 李翠翠. 硼掺杂氧化铜用于电还原CO2制乙烯研究[J]. 现代化工, 2022, 42(S2): 302-306.
[4] 彭文争, 刘琦, 刘双星, 薛明, 彭勃. 天然气水合物清洁开采技术研究进展[J]. 现代化工, 2022, 42(9): 40-45.
[5] 陆诗建, 贡玉萍, 刘玲, 康国俊, 陈曦, 刘苗苗, 张娟娟, 王风. 醇胺溶液吸收CO2的腐蚀研究进展[J]. 现代化工, 2022, 42(9): 76-80.
[6] 张欣颖, 石国亮. 二氧化碳固体碱吸附剂改性研究进展[J]. 现代化工, 2022, 42(8): 50-53.
[7] 何盛宝, 侯雨璇, 王红秋. 双碳目标下乙烯生产技术发展趋势[J]. 现代化工, 2022, 42(8): 60-64.
[8] 陈秋月, 江坤, 李涛, 刘运权, 李水荣, 王兆林. 中空笼球状Ca基CO2吸附剂的合成及其循环吸脱附性能研究[J]. 现代化工, 2022, 42(8): 167-171,176.
[9] 张蕊, 王思月, 洪耀华, 马星宇, 姜晓乐. 二维沸石咪唑骨架有效催化二氧化碳电还原的研究[J]. 现代化工, 2022, 42(7): 125-129.
[10] 徐浩然, 封立林, 李强, 欧阳丰, 冯向东, 吕佳慧. 燃煤电厂脱硫废水选择性电渗析浓缩处理中试研究[J]. 现代化工, 2022, 42(7): 236-240.
[11] 何潇宁, 何璇, 贾潇, 孙靖虎, 殷佼龙, 罗劼欣, 邓宝康. 二氧化碳开发非常规能源研究进展[J]. 现代化工, 2022, 42(5): 40-44.
[12] 袁梦明, 唐焯林, 李冰晶, 李涛, 朱华丽, 陈召勇. 聚吡咯基碳纳米管的制备及在锂二氧化碳电池中的应用研究[J]. 现代化工, 2022, 42(5): 92-96.
[13] 牛宏伟, 马园园, 付豪, 廉红蕾. 铜基催化剂电还原CO2制乙醇的研究[J]. 现代化工, 2022, 42(3): 55-58,63.
[14] 冯曼曼, 方远鑫, 程慧远, 潘东伟, 吴雪梅, 贺高红. 孤立的Ni/Co双金属位点协同催化CO2电还原[J]. 现代化工, 2022, 42(3): 92-97.
[15] 龚浩, 王宇宏, 郭雨菲, 张静, 师倩莹, 高利珍. 铋/纳米洋葱碳电极的制备及其电化学还原CO2性能研究[J]. 现代化工, 2022, 42(3): 144-148.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备09035943号-37
版权所有 © 《现代化工》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn