Please wait a minute...
 
最新公告: 重要提醒:骗子冒充编辑部要求加作者微信,谨防上当!   关于暑假、寒假期间版面费发票及期刊样刊延迟邮寄的通知    
现代化工  2022, Vol. 42 Issue (8): 209-214,219    DOI: 10.16606/j.cnki.issn0253-4320.2022.08.041
  工业技术 本期目录 | 过刊浏览 | 高级检索 |
天然气/煤制乙二醇路线碳排放与经济分析
卜庆佳1,2,3, 张媛媛4, 李俊杰1,2,3, 杨潇潇1,2,3, 许德平1, 田亚峻2,3
1. 中国矿业大学(北京)化学与环境工程学院, 北京 100083;
2. 中国科学院青岛生物能源与过程研究所, 泛能源规划战略中心, 山东 青岛 266101;
3. 山东能源研究院, 山东 青岛 266100;
4. 北京低碳清洁能源研究院, 北京 102211
Analysis on carbon dioxide emission and economy of natural gas to ethylene glycol route and coal to ethylene glycol route
BU Qing-jia1,2,3, ZHANG Yuan-yuan4, LI Jun-jie1,2,3, YANG Xiao-xiao1,2,3, XU De-ping1, TIAN Ya-jun2,3
1. School of Chemical & Environmental Engineering, China University of Mining & Technology (Beijing), Beijing 100083, China;
2. Extended Energy Big Data and Strategy Research Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China;
3. Shandong Energy Institute, Qingdao 266100, China;
4. National Institute of Clean-and-Low-Carbon Energy, CHN Energy, Beijing 102211, China
下载:  PDF (1450KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 从生命周期角度出发,对煤制乙二醇(coal to ethylene glycol,CTEG)路线和天然气制乙二醇(natural gas to ethylene glycol,NGTEG)路线进行全面的技术、碳排放与经济对比分析。结果表明,CTEG路线单位产品能耗是NGTEG路线的1.5倍,单位产品碳排放是NGTEG路线的1.6倍。然而,CTEG路线具有较好的经济效益,利润与投资回报率分别比NGTEG路线高1 499元/t和3.4%。通过分析原料、燃料和产品价格波动对2条路线经济竞争力的影响,发现CTEG路线受3种价格波动影响较小。CTEG路线具有良好的发展前景,但必须通过技术进步解决高能耗和高碳排放问题。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
卜庆佳
张媛媛
李俊杰
杨潇潇
许德平
田亚峻
关键词:  煤制乙二醇  天然气制乙二醇  合成气  模型  环境  经济    
Abstract: From the perspective of life cycle,a comprehensive comparison analysis involving in technical,carbon dioxide emission and economy is carried out between the coal to ethylene glycol (CTEG) route and the natural gas to ethylene glycol (NGTEG) route.The results show that the energy consumption per unit product of CTEG route is 1.5 times that of NGTEG route,and the carbon dioxide emission per unit product of CTEG route is 1.6 times that of NGTEG route.However,CTEG route has better economic benefits,and its profit and ROI are respectively 1 499 RMB/t and 3.4 percentage points higher than those of NGTEG route,respectively.The impact of price fluctuations of raw materials,fuel and products on the economic competitiveness of two routes is analyzed,it is found that CTEG route is less affected by the price fluctuations of the three types.CTEG route is expected to develop with a great momentum,but it needs to address high energy consumption and carbon dioxide emissions through the technology improvement.
Key words:  coal to ethylene glycol    natural gas to ethylene glycol    syngas    model    environment    economy
收稿日期:  2021-09-20      修回日期:  2022-06-08           出版日期:  2022-08-20
ZTFLH:  TQ53  
作者简介:  卜庆佳(1997-),女,硕士生田亚峻(1972-),男,博士,研究员,研究方向为能源数据与能源战略,通讯联系人,tianyajun@qibebt.ac.cn
引用本文:    
卜庆佳, 张媛媛, 李俊杰, 杨潇潇, 许德平, 田亚峻. 天然气/煤制乙二醇路线碳排放与经济分析[J]. 现代化工, 2022, 42(8): 209-214,219.
BU Qing-jia, ZHANG Yuan-yuan, LI Jun-jie, YANG Xiao-xiao, XU De-ping, TIAN Ya-jun. Analysis on carbon dioxide emission and economy of natural gas to ethylene glycol route and coal to ethylene glycol route. Modern Chemical Industry, 2022, 42(8): 209-214,219.
链接本文:  
https://www.xdhg.com.cn/CN/10.16606/j.cnki.issn0253-4320.2022.08.041  或          https://www.xdhg.com.cn/CN/Y2022/V42/I8/209
[1] 国家发改委.产业结构调整指导目录(2011年本)[J].江苏建材,2011,(2):1-3.
[2] 中国煤炭工业协会.煤炭工业"十四五"现代煤化工发展指导意见[R].北京:中国煤炭工业协会,2021.
[3] 国务院.中华人民共和国国民经济和社会发展第十四个五年规划和2035年远景目标纲要[R].北京:国务院,2021.
[4] 程婉静,李俊杰,刘欢,等.两种技术路线的煤制氢产业链生命周期成本分析[J].煤炭经济研究,2020,40(3):4-11.
[5] Yang Q,Yang Q,Xu S,et al.Technoeconomic and environmental analysis of ethylene glycol production from coal and natural gas compared with oil-based production[J].Journal of Cleaner Production,2020,273:123120.
[6] 张媛媛,王永刚,田亚峻.典型现代煤化工过程的二氧化碳排放比较[J].化工进展,2016,35(12):4060-4064.
[7] 张媛媛,王永刚,田亚峻.碳税对我国现代煤化工产品经济性的影响分析[J].现代化工,2016,36(12):1-4.
[8] 郭勤,苗瑾超,张宏举,等.天然气制乙二醇工艺技术比较及经济性分析[J].江西化工,2019,(1):16-21.
[9] Liu H,Huang Y,Yuan H,
et al.Life cycle assessment of biofuels in China:Status and challenges[J].Renewable and Sustainable Energy Reviews,2018,97:301-322.
[10] 杨建成,徐成,王如松.产品生命周期评价方法及应用[M].北京:气象出版社,2002.
[11] Lee D,Elgowainy A,Dai Q.Life cycle greenhouse gas emissions of hydrogen fuel production from chlor-alkali processes in the United States[J].Applied Energy,2018,217:467-479.
[12] Climate Change:The physical science basis[R].Geneva:Intergovernmental Panel on Climate Change,2013.
[13] Xiang D,Yang S,Li X,et al.Life cycle assessment of energy consumption and GHG emissions of olefins production from alternative resources in China[J].Energy Conversion and Management,2015,90:12-20.
[14] Ou X,Xiaoyu Y,Zhang X.Life-cycle energy consumption and greenhouse gas emissions for electricity generation and supply in China[J].Applied Energy,2011,88(1):289-297.
[15] Fang R.Life cycle cost assessment of wind power-hydrogen coupled integrated energy system[J].International Journal of Hydrogen Energy,2019,44(56):29399-29408.
[16] 中国煤炭协会.煤炭工业发展年度报告[R].北京:2020.
[17] 国家统计局.中国能源统计年鉴[M].北京:中国统计出版社,2020.
[18] Yu S,Wei Y,Guo H,
et al.Carbon emission coefficient measurement of the coal-to-power energy chain in China[J].Applied Energy,2014,114:290-300.
[19] 国家发改委.省级温室气体排放指南[R].北京:2012.
[20] 王庆一.2020能源数据[R].北京:2021.
[21] 中国交通运输协会.中国交通年鉴[M].北京:中国交通出版社,2020.
[22] Grubert E A,Brandt A R.Three considerations for modeling natural gas system methane emissions in life cycle assessment[J].Journal of Cleaner Production,2019,222:760-767.
[23] 张庆.煤制乙二醇技术进展及产业分析[D].西安:西北大学,2012.
[24] 杨庆,许思敏,张大伟,等.石油与煤路线制乙二醇过程的技术经济分析[J].化工学报,2020,71(5):2164-2172.
[25] 姚珏.煤制乙二醇生产技术现状及技术经济分析[J].山东化工,2020,49(16):112-113.
[26] Yang Q,Zhu S,Yang Q,
et al.Comparative techno-economic analysis of oil-based and coal-based ethylene glycol processes[J].Energy Conversion and Management,2019,198:111814.
[27] Simeone M,Ian B H,Christian J R,
et al.A methodology for performing global uncertainty and sensitivity analysis in systems biology[J].Journal of Theoretical Biology,2008,254(1):178-196.
[1] 高阳, 刘政伟, 杨文玉, 李焕, 张树才. 石化企业环保大数据智能云平台建设探讨[J]. 现代化工, 2022, 42(7): 15-20.
[2] 何卫东, 郝松源, 袁红. 餐厨废油基活性炭负载Ni-Cu双金属催化裂解餐厨废油制备氢气的研究[J]. 现代化工, 2022, 42(7): 158-165.
[3] 戴犀尊, 罗学科, 姜子豪, 蒋凯. 基于微型光谱仪的总磷监测仪设计[J]. 现代化工, 2022, 42(7): 251-254.
[4] 马雪飞, 李宗鸿, 肖植煌, 李平. 有机液体储运氢技术经济分析与比较[J]. 现代化工, 2022, 42(6): 202-205,210.
[5] 侯超, 杨鲁伟, 蔺雪军, 陶磊, 孙桂祥. 高盐废水蒸发结晶过程采用机械蒸汽再压缩(MVR)技术特性研究[J]. 现代化工, 2022, 42(6): 211-215,220.
[6] 侯家萍, 王闻, 张蕾欣, 孙旭东. 现代生物质能源技术体系及其产业化应用态势[J]. 现代化工, 2022, 42(5): 7-13.
[7] 班福忱, 王健, 赵鑫宇. 改性沸石填充电化学反应器处理生活污水中氨氮的试验研究[J]. 现代化工, 2022, 42(5): 157-161.
[8] 候国新, 杨扬, 朱炜玄, 董宏光, 王克峰. 重芳烃综合利用常规工艺与隔壁塔工艺对比分析[J]. 现代化工, 2022, 42(5): 224-228,232.
[9] 李俊生, 马娜, 徐嘉伦, 夏至, 谭冲, 姜黎明, 左金龙. 钙钛矿光催化剂在农药降解中的研究进展[J]. 现代化工, 2022, 42(3): 69-73.
[10] 孙雪婷, 王晓霖, 陈钢. 炼油化工的先进控制技术应用进展[J]. 现代化工, 2022, 42(1): 40-45.
[11] 杨柳, 李猛, 秦龙龙, 唐磊. 山地油气管道环境保护与污染管控的发展现状及思考[J]. 现代化工, 2021, 41(S1): 12-14.
[12] 丁彤彤, 孙秀花, 高昌录. 自抛光防污涂料的研究进展[J]. 现代化工, 2021, 41(S1): 58-61,66.
[13] 严浩军, 高飞翎, 胡华杰, 柳平英, 张秋菊, 孔春龙. 酸性环境下用于溶剂脱水的沸石分子筛膜的研究进展[J]. 现代化工, 2021, 41(9): 33-37,42.
[14] 秦磊, 任汝全, 钟演, 樊永明. 高灵敏、可穿戴生物质炭基柔性压力传感材料的制备与性能研究[J]. 现代化工, 2021, 41(9): 75-80.
[15] 安登超, 廉景燕, 韩振为. 多不饱和脂肪酸酯分离纯化研究-1:物性模型研究与建立[J]. 现代化工, 2021, 41(9): 197-200.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备09035943号-37
版权所有 © 《现代化工》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn