Please wait a minute...
 
最新公告: 重要提醒:骗子冒充编辑部要求加作者微信,谨防上当!   关于暑假、寒假期间版面费发票及期刊样刊延迟邮寄的通知    
现代化工  2022, Vol. 42 Issue (8): 188-192    DOI: 10.16606/j.cnki.issn0253-4320.2022.08.037
  科研与开发 本期目录 | 过刊浏览 | 高级检索 |
银、铈改性MIL-101脱硫吸附剂的制备与优化
巩明月1, 赫英明2, 辛颖1, 姜伟1, 王东军1
1. 中国石油天然气股份有限公司大庆化工研究中心, 黑龙江 大庆 163000;
2. 大庆油田有限责任公司勘探开发研究院, 黑龙江 大庆 163000
Preparation and process optimization of Ag-Ce modified MIL-101 desulfurization adsorbent
GONG Ming-yue1, HE Ying-ming2, XIN Ying1, JIANG Wei1, WANG Dong-jun1
1. Daqing Petrochemical Research Center, Petrochemical Research Institute, PetroChina Company Limited, Daqing 163000, China;
2. The Research Institute of Exploration and Development, PetroChina Daqing Oilfield Company, Daqing 163000, China
下载:  PDF (2382KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 利用银、铈双金属改性金属有机骨架MIL-101制备Ag-Ce/MIL-101吸附剂,并对Ag-Ce/MIL-101进行XRD、SEM、BET和ICP表征。考察了制备条件对Ag-Ce/MIL-101吸附苯并噻吩(BT)性能的影响。结果表明,Ag-Ce/MIL-101未破坏MIL-101的原始晶格结构,比表面积和孔容有所降低。适宜Ag-Ce/MIL-101的制备条件为:负载顺序为先银后铈,金属负载浓度均为40 mmol/L,金属溶液用量均为2 mL,负载温度为150℃,负载时间为9 h。在吸附剂质量为0.1 g、模拟油用量为20 mL、吸附温度为30℃、吸附时间为12 h时,Ag-Ce/MIL-101对BT的吸附量达到33.9 mg/g。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
巩明月
赫英明
辛颖
姜伟
王东军
关键词:  金属改性  MIL-101  吸附剂  脱硫  苯并噻吩    
Abstract: Ag-Ce/MIL-101 adsorbent is successfully prepared via loading Ag and Ce onto MIL-101(Cr),and characterized via XRD,SEM,BET and ICP methods.The effect of preparation conditions on the adsorption of benzothiophene (BT) by Ag-Ce/MIL-101 is evaluated.It is shown that the regular structure of MIL-101 remains unchanged after the loading of metals.Compared with MIL-101,the specific surface area and pore volume of Ag-Ce/MIL-101 drop to a certain extent.The optimal preparation conditions suitable for Ag-Ce/MIL-101 adsorbent are as follows:Ag is loaded before Ce,the loading concentration of both silver ion and cerium ion is 40 mmol·L-1,the dosages of AgNO3 solution and Ce(NO3)3 solution are both 2 mL,the loading temperature is 150℃,and the loading time is 9 h.The adsorption effect of Ag-Ce/MIL-101 on benzothiophene reaches 33.9 mg·g-1 when the dosage of adsorbent is 0.1 g,the dosage of model oil is 20 mL,and the adsorption has been performed at 30℃ for 12 h.
Key words:  modification by metals    MIL-101    adsorbent    desulfurization    benzothiophene
收稿日期:  2021-09-02      修回日期:  2022-06-06           出版日期:  2022-08-20
ZTFLH:  O643.361  
通讯作者:  巩明月(1992-),女,硕士,工程师,研究方向为工业催化,通讯联系人,1477168331@qq.com。    E-mail:  1477168331@qq.com
引用本文:    
巩明月, 赫英明, 辛颖, 姜伟, 王东军. 银、铈改性MIL-101脱硫吸附剂的制备与优化[J]. 现代化工, 2022, 42(8): 188-192.
GONG Ming-yue, HE Ying-ming, XIN Ying, JIANG Wei, WANG Dong-jun. Preparation and process optimization of Ag-Ce modified MIL-101 desulfurization adsorbent. Modern Chemical Industry, 2022, 42(8): 188-192.
链接本文:  
https://www.xdhg.com.cn/CN/10.16606/j.cnki.issn0253-4320.2022.08.037  或          https://www.xdhg.com.cn/CN/Y2022/V42/I8/188
[1] 李文秀,张华,范俊刚,等.改性γ-Al2O3的制备及其对苯并噻吩吸附的性能[J].石油学报(石油加工),2014,30(6):984-989.
[2] 单佳慧,曹宇锋,喻红梅,等.一步水热法合成铜改性的介孔γ-Al2O3及其吸附脱硫性能研究[J].应用化工,2015,44(1):104-108.
[3] Huo Q,Li J,Liu G,et al.Adsorption desulfurization performances of Zn/Co porous carbons derived from bimetal-organic frameworks[J].Chemical Engineering Journal,2019,362:287-297.
[4] Ghubayra R,Nuttall C,Hodgkiss S,et al.Oxidative desulfurization of model diesel fuel catalyzed by carbon-supported heteropoly acids[J].Applied Catalysis B:Environmental,2019,253:309-316.
[5] Shah S S,Ahmad I,Ahmad W,et al.Study on adsorptive capability of acid activated charcoal for desulphurization of model and commercial fuel oil samples[J].Journal of Environmental Chemical Engineering,2018,6(4):4037-4043.
[6] Schwieger W,Machoke A G,Weissenberger T,et al.Hierarchy concepts:Classification and preparation strategies for zeolite containing materials with hierarchical porosity[J].Chemical Society Reviews,2016,45(12):3353-3376.
[7] Dang S,Zhao L,Yang Q,et al.Competitive adsorption mechanism of thiophene with benzene in FAU zeolite:The role of displacement[J].Chemical Engineering Journal,2017,328:172-185.
[8] Golubev O V,Zhou H,Karakhanov E A.Reactive adsorption desulfurization of dibenzothiophene in presence of mesoporous adsorbents[J].Russian Journal of Applied Chemistry,2021,94:586-594.
[9] Cao Y,Lu S,Cui W,et al.Adsorption desulfurization via π-complexation with Ag+-exchanged anionic metal-organic framework[J].Industrial&Engineering Chemistry Research,2019,58(16):6704-6711.
[10] Emam H E,Ahmed H B,El-Deib H R,et al.Non-invasive route for desulfurization of fuel using infrared-assisted MIL-53(Al)-NH2 containing fabric[J].Journal of Colloid and Interface Science,2019,556:193-205.
[11] Qiu S,Du J H,Xiao Y H,et al.Hierarchical porous HKUST-1 fabricated by microwave-assisted synthesis with CTAB for enhanced adsorptive removal of benzothiophene from fuel[J].Separation and Purification Technology,2021,271:118868.
[12] Gentile F S,Pannico M,Causa M,et al.Metal defects in HKUST-1 MOF revealed by vibrational spectroscopy:A combined quantum mechanical and experimental study[J].Journal of Materials Chemistry A,2020,8(21):10796-10812.
[13] Su J,Hu T H,Murase R,et al.Redox activities of metal-organic frameworks incorporating rare-earth metal chains and tetrathiaful-valene linkers[J].Inorganic Chemistry,2019,58(6):3698-3706.
[14] Qin J,Tan P,Jiang Y,et al.Functionalization of metal-organic frameworks with cuprous sites using vapor-induced selective reduction:Efficient adsorbents for deep desulfurization[J].Green Chemistry,2016,18(11):3210-3215.
[15] Shi Shu,Li Y X,Liu X Q,et al.Fabrication of Cu+ sites in confined spaces for adsorptive desulfurization by series connection double-solvent strategy[J].Green Energy&Environment,2020,7(2):345-351.
[16] Huang C C,Zhao Z P,Ping E M,et al.Combination of coordinatively unsaturated metal sites and silver nano-particles in a Ni-based metal-organic framework for adsorptive desulfurization[J].Microporous and Mesoporous Materials,2021,323:111241.
[17] Zhang P,Xu Y Y,Guo K L,et al.Hierarchical-pore UiO-66 modified with Ag+ for π-complexation adsorption desulfurization[J].Journal of Hazardous Materials,2021,418:126247.
[18] Jin Y,Wu J,Wang J,et al.Highly efficient capture of benzothiophene with a novel water-resistant-bimetallic Cu-ZIF-8 material[J].Inorganica Chimica Acta,2020,503:119412.
[19] Khan N A,Kim C M,Jhung S H.Adsorptive desulfurization using Cu-Ce/metal-organic framework:Improved performance based on synergy between Cu and Ce[J].Chemical Engineering Journal,2016,311:20-27.
[20] Rajati H,Navarchian A H,Tangestaninejad S.Preparation and characterization of mixed matrix membranes based on Matrimid/PVDF blend and MIL-101(Cr) as filler for CO2/CH4 separation[J].Chem Eng J,2018,185(44):92-104.
[1] 张欣颖, 石国亮. 二氧化碳固体碱吸附剂改性研究进展[J]. 现代化工, 2022, 42(8): 50-53.
[2] 刘洋, 郭少青, 孙万兴, 孙正轩, 成伟杰, 高丽兵, 郭静静. 重质沥青基活性炭的制备研究[J]. 现代化工, 2022, 42(8): 146-150.
[3] 韩倩倩, 游晓宏, 朱一鸣, 沙海伟. 膜浓缩+蒸发塘处理工艺在燃气电厂废水零排放中的应用[J]. 现代化工, 2022, 42(8): 215-219.
[4] 耿新国, 杨卫亚, 隋宝宽, 王刚. 碳基载体石油馏分加氢脱硫催化剂研究进展[J]. 现代化工, 2022, 42(7): 75-78,83.
[5] 田鑫, 李欣, 王薇, 吕鹏, 马保军. Co/Si/Mo/Ni/Al2O3催化剂对汽油加氢脱硫性能的影响[J]. 现代化工, 2022, 42(7): 130-134,140.
[6] 郭玉超, 康洛铭, 李爱蓉, 陆原. 咪唑类离子液体脱除气体中有机硫化物的研究[J]. 现代化工, 2022, 42(7): 188-194.
[7] 刘霞, 姬咏琪, 李旭明, 王世凤, 田成, 石会龙. NH2-MIL-101(Fe)/BiVO4异质结光催化剂还原水中硝酸盐性能研究[J]. 现代化工, 2022, 42(7): 195-200.
[8] 徐浩然, 封立林, 李强, 欧阳丰, 冯向东, 吕佳慧. 燃煤电厂脱硫废水选择性电渗析浓缩处理中试研究[J]. 现代化工, 2022, 42(7): 236-240.
[9] 王芷, 刘乾静, 刘莉, 胡叶静, 李保国. 木质素提取及木质素吸附剂制备方法研究进展[J]. 现代化工, 2022, 42(6): 16-19.
[10] 范乐珍, 唐佩瑶, 李钰涵, 魏凤玉. 阴离子对铁盐氧化脱除煤中硫的影响[J]. 现代化工, 2022, 42(6): 153-155,161.
[11] 谷娜, 赵东亚, 高金龙, 董静文, 李宛萍, 刘欣伟. MIL-101(Fe)负载左旋咪唑制备缓控药物载体的研究[J]. 现代化工, 2022, 42(6): 196-201.
[12] 郑铭灏, 赵飞, 张净瑞, 陈雨王飞, 林清锦, 苑志华. PAC-PAM复合絮凝剂处理燃煤电厂脱硫废水的研究[J]. 现代化工, 2022, 42(5): 178-182.
[13] 李庚鸿, 朱振兴, 胡立峰, 朱丙田. 液化石油气脱硫技术研究进展[J]. 现代化工, 2022, 42(4): 67-71.
[14] 王百年, 陈长铸, 张告时, 邬清臣, 杨保俊. 氟化钙污泥脱硫工艺研究[J]. 现代化工, 2022, 42(4): 182-186,191.
[15] 纪明轩, 刘世念, 龙一飞, 李鸿鹄, 赵宁, 胡将军. 电解脱硫废水及产物回喷氧化烟气中Hg0的研究[J]. 现代化工, 2022, 42(2): 210-214,219.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备09035943号-37
版权所有 © 《现代化工》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn