Please wait a minute...
 
最新公告: 重要提醒:骗子冒充编辑部要求加作者微信,谨防上当!   关于暑假、寒假期间版面费发票及期刊样刊延迟邮寄的通知    
现代化工  2022, Vol. 42 Issue (8): 89-95    DOI: 10.16606/j.cnki.issn0253-4320.2022.08.019
  科研与开发 本期目录 | 过刊浏览 | 高级检索 |
温和条件下多级孔Mg-MOF催化CO2与环氧化物的环加成反应研究
胡春慧, 吴晶晶, 刘雪霆
合肥工业大学化学与化工学院, 可控化学与材料化工安徽省重点实验室, 安徽 合肥 230009
Study on cycloaddition reaction between CO2 and epoxides over hierarchical porous Mg-MOF under mild conditions
HU Chun-hui, WU Jing-jing, LIU Xue-ting
Anhui Provincial Key Laboratory of Controllable Chemical & Material Chemical Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
下载:  PDF (2839KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 以镁离子(Mg2+)为金属中心、富氮多羧基2,4,6-三[(对羧基苯基)氨基]-1,3,5-三嗪(H3TATAB)配体为连接器,通过溶剂热法合成了一种新型的多级孔金属有机框架(MOFs) Mg-TATAB,并利用XRD、SEM、XPS、FT-IR和BET等分析手段对其进行结构表征。在常压、无助催化剂和无溶剂的温和条件下有效进行二氧化碳与环氧化物的环加成反应,结果表明,Mg-TATAB对环加成反应具有较高的催化活性和选择性;催化剂重复使用后,选择性下降微小。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
胡春慧
吴晶晶
刘雪霆
关键词:  富氮多羧基类配体  Mg-TATAB  多级孔  环加成    
Abstract: Mg-TATAB,a novel kind of hierarchical porous metal organic frameworks (MOFs),is synthesized through solvent thermal method with magnesium ion (Mg2+) as metal center and 4,4',4″-((1,3,5-triazine-2,4,6-triyl)tris(azanediyl))tribenzoic acid (H3TATAB),a nitrogen-rich polycarboxylic group ligand,as linker.The structure of Mg-TATAB is characterized by means of XRD,SEM,XPS,FTIR and BET,etc.The cycloaddition reaction between epoxide and CO2 is effectively performed under mild conditions such as ambient pressure,cocatalyst free and solvent free.Results show that Mg-TATAB shows a high catalytic activity and selectivity for this cycloaddition reaction.In addition,the selectivity of catalyst decreases slightly after it has been reused.
Key words:  nitrogen-rich polycarboxyl group ligand    Mg-TATAB    hierarchical porous    cycloaddition
收稿日期:  2021-09-04      修回日期:  2022-06-13           出版日期:  2022-08-20
ZTFLH:  O643.3  
基金资助: 安徽省自然科学基金(1908085MB42);国家自然科学基金(51372062)
通讯作者:  刘雪霆(1969-),男,博士,副教授,主要从事金属有机框架材料的设计及高耐磨低温烧结人造采砂的研发,通讯联系人,wmlxt@163.com。    E-mail:  wmlxt@163.com
作者简介:  胡春慧(1997-),女,硕士研究生,研究方向为金属有机框架的催化性能研究,2604525421@qq.com
引用本文:    
胡春慧, 吴晶晶, 刘雪霆. 温和条件下多级孔Mg-MOF催化CO2与环氧化物的环加成反应研究[J]. 现代化工, 2022, 42(8): 89-95.
HU Chun-hui, WU Jing-jing, LIU Xue-ting. Study on cycloaddition reaction between CO2 and epoxides over hierarchical porous Mg-MOF under mild conditions. Modern Chemical Industry, 2022, 42(8): 89-95.
链接本文:  
https://www.xdhg.com.cn/CN/10.16606/j.cnki.issn0253-4320.2022.08.019  或          https://www.xdhg.com.cn/CN/Y2022/V42/I8/89
[1] Han Y H,Zhou Z Y,Tian C B,et al.A dual-walled cage MOF as an efficient heterogeneous catalyst for the conversion of CO2 under mild and co-catalyst free conditions[J].Green Chem,2016,18(14):4086-4091.
[2] 李力,刘娅,陆宇超,等.生物炭的环境效应及其应用的研究进展[J].环境化学,2011,30(8):1412-1421.
[3] 张琳琳,张梅,刘淑芝.非贵金属催化剂催化制备对氨基苯酚研究进展[J].现代化工,2020,40(2):72-75.
[4] Ema T,Miyazaki Y,Koyama S,et al.A bifunctional catalyst for carbon dioxide fixation:Cooperative double activation of epoxides for the synthesis of cyclic carbonates[J].Chem Commun,2012,48(37):4489-4491.
[5] Monassier A,Elia V D,Cokoja M,et al.Synthesis of cyclic carbonates from epoxides and CO2 under mild conditions using a simple,highly efficient niobium-based catalyst[J].Chem Cat Chem,2013,5(6):1321-1324.
[6] Dai W L,Dai W L,Mao P,et al.Quaternary phosphonium salt-functionalized Cr-MIL-101:A bifunctional and efficient catalyst for CO2 cycloaddition with epoxides[J].J CO2 Util,2020,36:295-305.
[7] Dharman M M,Yu J I,Ahn J Y,et al.Selective production of cyclic carbonate over polycarbonate using a double metal cyanide-quaternary ammonium salt catalyst system[J].Green Chem,2009,11,1754-1757.
[8] Liu M,Gao K,Liang L,et al.Experimental and theoretical insights into binary Zn-SBA-15/KI catalysts for the selective coupling of CO2 and epoxides into cyclic carbonates under mild conditions[J].Catal Sci Technol,2016,6(16):6406-6416.
[9] Ding M,Jiang H L.Incorporation of imidazolium-based poly (ionic liquid) s into a metal-organic framework for CO2 capture and conversion[J].ACS Catal,2018,8(4):3194-3201.
[10] Furukawa H,Cordova K E,O'Keeffe M,et al.The chemistry and applications of metal-organic frameworks[J].Science,2013,341(6149):1230444.
[11] Pal T K,De D,Bharadwaj P K.Metal-organic frameworks for the chemical fixation of CO2 into cyclic carbonates[J].Coord Chem Rev,2020,408:213173.
[12] Tanabe K K,Cohen S M.Postsynthetic modification of metal-organic frameworks-a progress report[J].Chem Soc Rev,2011,40(2):498-519.
[13] Nguyen P T K,Nguyen H T D,Nguyen H N,et al.New metal-organic frameworks for chemical fixation of CO2[J].ACS Appl Mater Interfaces,2018,10(1):733-744.
[14] Dhankhar S S,Das R,Ugale B,et al.Chemical fixation of CO2 under solvent and co-catalyst-free conditions using a highly porous two-fold interpenetrated Cu (Ⅱ)-metal-organic framework[J].Cryst Growth Des,2021,21(2):1233-1241.
[15] Ji H,Naveen K,Lee W,et al.Pyridinium-functionalized ionic metal-organic frameworks designed as bifunctional catalysts for CO2 fixation into cyclic carbonates[J].ACS Appl Mater Interfaces,2020,12(22):24868-24876.
[16] Ugale B,Kumar S,Dhilip Kumar T J,et al.Environmentally friendly,co-catalyst-free chemical fixation of CO2 at mild conditions using dual-walled nitrogen-rich three-dimensional porous metal-organic frameworks[J].Inorg Chem,2019,58(6):3925-3936.
[17] Ma D X,Li B Y,Liu K,et al.Bifunctional MOF heterogeneous catalysts based on the synergy of dual functional sites for efficient conversion of CO2 under mild and co-catalyst free conditions[J].J Mater Chem A,2015,3(46):23136-23142.
[18] Fang Q R,Yuan D Q,Sculley J,et al.Functional mesoporous metal-organic frameworks for the capture of heavy metal ions and size-selective catalysis[J].Inorg Chem,2010,49(24):11637-11642.
[19] Tran Y B N,Nguyen Phuong T K,Luong Quang T,et al.Series of M-MOF-184(M=Mg,Co,Ni,Zn,Cu,Fe) metal-organic frameworks for catalysis cycloaddition of CO2[J].Inorg Chem,2020,59(22):16747-16759.
[20] Mazaj M,Celic T B,Mali G,et al.Control of the crystallization process and structure dimensionality of Mg-benzene-1,3,5-tricarboxylates by tuning solvent composition[J].Cryst Growth Des,2013,13(8):3825-3834.
[21] Xu K,Moeljadi A M P,Mai B K,et al.How does CO2 react with styrene oxide in Co-MOF-74 and Mg-MOF-74?catalytic mechanisms proposed by QM/MM calculations[J].J Phys Chem C,2018,122(1):503-514.
[22] Babu R,Roshan R,Kathalikkattil A C,et al.Rapid,microwave-assisted synthesis of cubic,three-dimensional,highly porous MOF-205 for room temperature CO2 fixation via cyclic carbonate synthesis[J].ACS Appl Mater Interfaces,2016,8(49):33723-33731.
[23] Zhao Y N,Zhang S R,Wang W,et al.A 3D metal-organic framework with dual-aerial-octahedral trinucleate building units:Synthesis,structure and fluorescence sensing properties[J].New J Chem,2018,42(17):14648-14654.
[24] Wu Y F,Song X H,Zhang J H,et al.Mn-based MOFs as efficient catalysts for catalytic conversion of carbon dioxide into cyclic carbonates and DFT studies[J].Chem Eng Sci,2019,201:288-297.
[25] Li H P,Dou Z D,Chen S Q,et al.Design of a multifunctional indium-organic framework:Fluorescent sensing of nitro compounds,physical adsorption,and photocatalytic degradation of organic dyes[J].Inorg Chem,2019,58(16):11220-11230.
[26] Tan J,Zhou B B,Liang C C,et al.Secondary-amine-functionalized isoreticular metal-organic frameworks for controllable and selective dye capture[J].Mater Chem Front,2018,2(1):129-135.
[27] Wu Y F,Song X H,Xu S Q,et al.2-Methylimidazole modifed Co-BTC MOF as an effcient catalyst for chemical fixation of carbon dioxide[J].Catal Lett,2019,149(9):2575-2585.
[28] Gao C Y,Tian H R,Ai J,et al.A microporous Cu-MOF with optimized open metal sites and pore spaces for high gas storage and active chemical fixation of CO2[J].Chem Commu,2016,52(74):11147-11150.
[29] Kima J,Kima S N,Jang H G,et al.CO2 cycloaddition of styrene oxide over MOF catalysts[J].Appl Catal A:Gen,2013,453:175-180.
[30] Xue Z M,Jiang J Y,Ma M G,et al.Gadolinium-based metal-organic framework as an efficient and heterogeneous catalyst to activate epoxides for cycloaddition of CO2 and alcoholysis[J].ACS Sustainable Chem Eng,2017,5(3):2623-2631.
[31] Lyu J F,Zhang X,Li P,et al.Exploring the role of hexanuclear clusters as lewis acidic sites in isostructural metal-organic frameworks[J].Chem Mater,2019,31(11):4166-4172.
[32] Song J L,Zhang Z F,Hu S Q,et al.MOF-5/n-Bu4NBr:An efficient catalyst system for the synthesis of cyclic carbonates from epoxides and CO2 under mild conditions[J].Green Chem,2009,11(7):1031-1036.
[33] Xiang W L,Sun Z Y,Wu Y R,et al.Enhanced cycloaddition of CO2 to epichlorohydrin over zeolitic imidazolate frameworks with mixed linkers under solventless and co-catalyst-free Condition[J].Catalysis Today,2020,339:337-343.
[34] Andrea K A,Butler E D,Brown T R,et al.Iron complexes for cyclic carbonate and polycarbonate formation:Selectivity control from ligand design and metal-center geometry[J].Inorg Chem,2019,58(16):11231-11240.
[35] Li J,Li W J,Xu S C,et al.Porous metal-organic framework with Lewis acid-base bifunctional sites for high efficient CO2 adsorption and catalytic conversion to cyclic carbonates[J].Inorg Chem Comm,2019,106:70-75.
[36] Sharma N,Dhankhar S S,Nagaraja C M,et al.A Mn (Ⅱ)-porphyrin based metal-organic framework (MOF) for visible-light-assisted cycloaddition of carbon dioxide with epoxides[J].Micropor and Mesopor Mat,2019,280:372-378.
[37] Ding L G,Yao B J,Jiang W L,et al.Bifunctional imidazolium-based ionic liquid decorated UiO-67 type MOF for selective CO2 adsorption and catalytic property for CO2 cycloaddition with epoxides[J].Inorg Chem,2017,56(4):2337-2344.
[38] Tharun J,Bhin K M,Roshan R,et al.Ionic liquid tethered post functionalized ZIF-90 framework for the cycloaddition of propylene oxide and CO2[J].Green Chem,2016,18(8):2479-2487.
[39] Li H,Lin H,Hu Y,et al.Hollow Pt-Ni alloy nanospheres with tunable chamber structure and enhanced activity[J].J Mater Chem,2011,21(45):18447-18453.
[1] 马北冰, 李晓雪, 牛晓坡, 王庆法. 多级孔ZSM-5负载PtNi催化木质素衍生物选择性加氢脱氧制备环烷烃的研究[J]. 现代化工, 2022, 42(7): 213-218,223.
[2] 胡一博, 倪婉萍, 刘民, 郭新闻. 多级孔Fe/ZSM-5的制备及其亚甲基蓝降解性能研究[J]. 现代化工, 2021, 41(1): 195-200.
[3] 李同辉, 左轶, 杨丽倩, 刘民, 郭新闻. 干胶转化法制备大孔/微孔复合钛硅分子筛[J]. 现代化工, 2020, 40(S1): 111-116.
[4] 吕存彬, 刘清华, 李闯, 郭志远, 王永杰, 项玉芝. 不同银引入方式的多级孔分子筛的制备及表征[J]. 现代化工, 2020, 40(S1): 190-194.
[5] 魏麟骄, 李学进, 陈艳红, 程光南. 后处理法制备多级孔Y型分子筛及其加氢裂化性能研究[J]. 现代化工, 2020, 40(3): 190-194.
[6] 张莎, 刘芳, 李竞草, 胡江亮, 任秀蓉. 多级孔MOFs材料的合成及其催化应用研究进展[J]. 现代化工, 2020, 40(11): 39-43.
[7] 陈世宇, 贾庆明, 支云飞, 陕绍云, 苏红莹. 用于CO2和环氧化物开环加成的负载型催化剂研究进展[J]. 现代化工, 2019, 39(3): 16-20.
[8] 李璐, 白英芝, 王海彦. PS乳液对MoO3-ZrO2结构及异构化性能的影响[J]. 现代化工, 2019, 39(3): 103-107.
[9] 李国华, 李会鹏, 赵华, 李艳歌, 关圣楠. 多级孔Hβ分子筛催化苯甲醚与乙酸酐酰化反应的研究[J]. 现代化工, 2019, 39(2): 112-116.
[10] 李政杭, 刘民, 李俊杰, 郭新闻. 碱处理调控ZSM-5孔结构及其在甲醇制芳烃中的性能研究[J]. 现代化工, 2019, 39(11): 67-72.
[11] 李洪坤, 张安峰, 侯章贵, 齐美美, 李孝国, 常洋, 郭新闻, 宋春山. 碱处理调变ZSM-5孔结构及甲苯甲醇烷基化制对二甲苯性能研究[J]. 现代化工, 2019, 39(10): 165-169.
[12] 佟鑫, 魏振浩, 朱学栋. 自模板法制多级孔ZSM-5及其在MTA反应中的应用[J]. 现代化工, 2018, 38(5): 150-154.
[13] 高荔, 石志远, 朱明远, 刘英明, 赵元首, 刘庆华, 徐成国. 多级孔道结构Beta沸石分子筛的制备及正庚烷加氢异构的应用[J]. 现代化工, 2018, 38(12): 170-174.
[14] 李贵贤, 孙烈东, 季东, 高远, 李宏伟. 多级孔道ZSM-5分子筛的研究进展[J]. 现代化工, 2017, 37(4): 20-24.
[15] 李莹, 孙晓英, 胡绪尧, 张红星, 闫柯乐, 邹兵, 肖安山. 多级孔MOFs材料的制备及吸附应用研究[J]. 现代化工, 2017, 37(4): 33-36,38.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备09035943号-37
版权所有 © 《现代化工》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn