Please wait a minute...
 
最新公告: 重要提醒:骗子冒充编辑部要求加作者微信,谨防上当!   关于暑假、寒假期间版面费发票及期刊样刊延迟邮寄的通知    
现代化工  2022, Vol. 42 Issue (7): 147-151    DOI: 10.16606/j.cnki.issn0253-4320.2022.07.029
  科研与开发 本期目录 | 过刊浏览 | 高级检索 |
添加物尺寸对ZIF-71/PEBA2533/PTFE膜结构及其分离性能的影响
郝鹏, 霍宇辰, 王晓东, 黄伟
太原理工大学省部共建煤基能源清洁高效利用国家重点实验室, 山西 太原 030024
Effect of additive size on structure and separation performance of ZIF-71/PEBA/PTFE MMMs
HAO Peng, HUO Yu-chen, WANG Xiao-dong, HUANG Wei
State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan 030024, China
下载:  PDF (4442KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 以合成的颗粒尺寸为140 nm×450 nm×1 μm的ZIF-71晶体为添加物、PEBA2533为有机基质,在PTFE载体上制备了一系列ZIF-71/PEBA2533/PTFE混合基质膜,并利用SEM、XRD和FT-IR等表征方法研究不同尺寸ZIF-71晶体及相应膜材料的形貌和结构,探究ZIF-71颗粒尺寸对膜材料结构的调节作用,同时将膜材料应用于苯酚-水溶液的分离。结果表明,小尺寸的ZIF-71晶体在膜中分布均匀且未发生团聚,但当添加物颗粒尺寸较大时会发生团聚现象。掺杂小尺寸ZIF-71颗粒可同时提高膜材料的苯酚通量和分离因子。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郝鹏
霍宇辰
王晓东
黄伟
关键词:  渗透汽化  苯酚  ZIF-71/PEBA2533混合基质膜    
Abstract: ZIF-71 crystals with a crystal size of 140 nmx450 nmx1 μm are synthesized.A series of ZIF-71/PEBA2533/PTFE mixed matrix membranes (MMMs) are prepared on PTFE carrier with ZIF-71 as the additive and PEBA2533 as the organic matrix.The morphology and structure of ZIF-71 crystals and corresponding MMMs are characterized by means of SEM,XRD,and FTIR-ATR.The adjustment effect of ZIF-71 particle size on the structure of MMMs is explored.The ZIF-71-based MMMs are applied to phenol-water solution separation.It is found that small particles of ZIF-71 crystals distribute evenly in the MMMs without any agglomeration.There happens to agglomeration when large ZIF-71 particles are added in the MMMs.MMMs loaded with small particles of ZIF-71 shows higher phenol flux and separation factor.
Key words:  pervaporation    phenol    ZIF-71/PEBA2533 mixed matrix membranes
收稿日期:  2021-06-15      修回日期:  2022-05-10           出版日期:  2022-07-20
ZTFLH:  O614  
基金资助: 国家重点研发计划资助项目(2020YFB0606405);2014年度山西省煤基重点科技攻关项目(MH2014-10);山西省回国留学人员科研资助项目(2017-047)
通讯作者:  王晓东(1973-),女,博士,教授,研究方向为先进膜材料的制备及应用,通讯联系人,wangxiaodong@tyut.edu.cn。    E-mail:  wangxiaodong@tyut.edu.cn。
作者简介:  郝鹏(1994-),男,硕士研究生,研究方向为膜制备及其应用,244280134@qq.com
引用本文:    
郝鹏, 霍宇辰, 王晓东, 黄伟. 添加物尺寸对ZIF-71/PEBA2533/PTFE膜结构及其分离性能的影响[J]. 现代化工, 2022, 42(7): 147-151.
HAO Peng, HUO Yu-chen, WANG Xiao-dong, HUANG Wei. Effect of additive size on structure and separation performance of ZIF-71/PEBA/PTFE MMMs. Modern Chemical Industry, 2022, 42(7): 147-151.
链接本文:  
https://www.xdhg.com.cn/CN/10.16606/j.cnki.issn0253-4320.2022.07.029  或          https://www.xdhg.com.cn/CN/Y2022/V42/I7/147
[1] Wang Y,Gruender M,Xu S.Polybenzimidazole (PBI) membranes for phenol dehydration via pervaporation[J].Ind Eng Chem Res,2014,53(47):18291-18303.
[2] Correia P F,de Carvalho J M.Recovery of phenol from phenolic resin plant effluents by emulsion liquid membranes[J].J Membr Sci,2003,225(1-2):41-49.
[3] Batley G.Solvent-induced photodegradation as a source or error in the analysis of polycyclic aromatic hydrocarbons-ScienceDirect[J].Journal of Chromatography A,1987,389:409-416.
[4] Singh A K,Chandra R.Pollutants released from the pulp paper industry:Aquatic toxicity and their health hazards[J].Aquatic toxicology,2019,211:202-216.
[5] Guo C,Tan Y,Yang S,et al.Development of phenols recovery process with novel solvent methyl propyl ketone for extracting dihydric phenols from coal gasification wastewater[J].Journal of Cleaner Production,2018,198:1632-1640.
[6] Wu B,Wang J,Hu Z,et al.Preparation,characterization and photocatalytic performances of materials based on CS2-modified titanate nanotubes[J].J Hazard Mater,2020,384:121404.
[7] Abbassian K,Kargari A,Kaghazchi T.Phenol removal from aqueous solutions by a novel industrial solvent[J].Chem Eng Commun,2015,202(3):408-413.
[8] Soto M L,Moure A,Domínguez H,et al.Recovery,concentration and purification of phenolic compounds by adsorption:A review[J].J Food Eng,2011,105(1):1-27.
[9] Hamoudi S,Sayari A,Belkacemi K,et al.Carbon materials and catalytic wet air oxidation of organic pollutants in wastewater[J].Catal Today,2000,62(4):379-388.
[10] Cheng X,Pan F,Wang M,et al.Hybrid membranes for pervaporation separations[J].J Membr Sci,2017,541:329-346.
[11] Kárászová M,Kacirková M,Friess K,et al.Progress in separation of gases by permeation and liquids by pervaporation using ionic liquids:A review[J].Sep Purif Technol,2014,132:93-101.
[12] Feng Xianshe,Robert Y M Huang.Liquid separation by membrane pervaporation:A review[J].Ind Eng Chem Res,1997,36(4):1048-1066.
[13] Li X,Liu Y,Wang J,et al.Metal-organic frameworks based membranes for liquid separation[J].Chem Soc Rev,2017,46(23):7124-7144.
[14] Ong Y K,Shi G M,Le N L,et al.Recent membrane development for pervaporation processes[J].Prog Polym Sci,2016,57:1-31.
[15] Hoshi M,Kogure M,Saitoh T,et al.Separation of aqueous phenol through polyurethane membranes by pervaporation[J].J Appl Polym Sci,1997,65(3):469-479.
[16] Bakhshi A,Mohammadi T,Aroujalian A.Pervaporation separation of binary and ternary mixtures with polydimethylsiloxane membranes[J].J Appl Polym Sci,2008,107(3):1777-1782.
[17] Hao X,Pritzker M,Feng X.Use of pervaporation for the separation of phenol from dilute aqueous solutions[J].J Membr Sci,2009,335(1-2):96-102.
[18] Tan Huifen,Wu Yanhui,Li Tongming.Pervaporation of n-butanol aqueous solution through ZSM-5-PEBA composite membranes[J].J Appl Polym Sci,2013,129(1):105-112.
[19] Vatani M,Raisi A,Pazuki G.The effect of spermidine on the structure,kinetics and stability of proteinase K:Spectroscopic and computational approaches[J].RSC Adv,2018,8(9):4713-4725.
[20] Yen H W,Chen Z H,Yang I K.Use of the composite membrane of poly (ether-block-amide) and carbon nanotubes (CNTs) in a pervaporation system incorporated with fermentation for butanol production by Clostridium acetobutylicum[J].Bioresour Technol,2012,109:105-109.
[21] Tang W,Lou H,Li Y,et al.Nitrogen-doped porous interconnected double-shelled hollow carbon spheres with high capacity for lithium ion batteries and sodium ion batteries[J].J Membr Sci,2019,581:93-104.
[22] Boom J P,Pünt I G M,Zwijnenberg H,et al.Transport through zeolite filled polymeric membranes[J].J Membr Sci,1998,138(2):237-258.
[23] Lin R,Hernandez B V,Ge L,et al.Metal organic framework based mixed matrix membranes:An overview on filler/polymer interfaces[J].J Mater Chem A,2018,6(2):293-312.
[24] Banerjee R,Phan A,Wang B,et al.Control of pore size and functionality in isoreticular zeolitic imidazolate frameworks and their carbon dioxide selective capture properties[J].Journal of the American Chemical Society,2008,319(5865):939-943.
[25] Li Y,Wee L H,Martens J A,et al.ZIF-71 as a potential filler to prepare pervaporation membranes for bio-alcohol recovery[J].J Mater Chem A,2014,2(26):10034-10040.
[26] Yin H,Khosravi A,O'Connor L,et al.Effect of ZIF-71 particle size on free-standing ZIF-71/PDMS composite membrane performances for Ethanol and 1-butanol removal from water through pervaporation[J].Ind Eng Chem Res,2017,56(32):9167-9176.
[27] Liu S,Liu G,Zhao X,et al.Hydrophobic-ZIF-71 filled PEBA mixed matrix membranes for recovery of biobutanol via pervaporation[J].J Membr Sci,2013,446:181-188.
[28] Wee L H,Li Y,Zhang K,et al.Porous Materials:Submicrometer-sized ZIF-71 filled organophilic membranes for improved bioethanol recovery:Mechanistic insights by monte carlo simulation and FT-IR spectroscopy[J].Adv Funct Mater,2015,25(4):516-525.
[29] Yin H,Lau C Y,Rozowski M,et al.Free-standing ZIF-71/PDMS nanocomposite membranes for the recovery of ethanol and 1-butanol from water through pervaporation[J].J Membr Sci,2017,529:286-292.
[30] Lin K Y A,Chang H A.Efficient adsorptive removal of humic acid from water using zeolitic imidazole framework-8(ZIF-8)[J].Water Air Soil Pollut,2015,226(2):10.1-10.17.
[31] Wang Y H,Shi Q,Xu H,et al.Bio-inspired functional integration by self-assembly and mineralization of polysaccharides[J].RSC Adv,2016,6(22):18052-18059.
[1] 张以民, 刘洋, 陈侣, 张雄志. 超分子水凝胶原位制备纳米镍及其在对硝基苯酚催化还原中的应用[J]. 现代化工, 2022, 42(6): 124-128,134.
[2] 李楠, 王晓东, 黄伟. KAUST-8膜的制备及其对乙醇/水体系的渗透汽化分离性能的研究[J]. 现代化工, 2022, 42(5): 102-108.
[3] 韩洪林, 申延明. 改性MCM-41催化苯酚与叔丁醇烷基化反应性能研究[J]. 现代化工, 2022, 42(4): 212-216.
[4] 郝鹏, 张茜, 王晓东, 黄伟. 高沸点有机物的分离研究进展[J]. 现代化工, 2021, 41(S1): 30-35.
[5] 赵薇, 赵文鹏, 刘妍, 连爽, 秦洪伟, 尤国红. L-甲硫氨酸修饰电极检测对氯苯酚[J]. 现代化工, 2021, 41(8): 239-242,247.
[6] 曾美婷, 何龙, 黄雪莉, 王雪枫, 杨彪, 罗清龙. 生物质基酚醛树脂的研究进展[J]. 现代化工, 2021, 41(4): 63-66,71.
[7] 张艳芬, 张巧玲, 焦纬洲, 郭婧, 刘有智. 撞击流-旋转填料床一步法制备氮掺杂二氧化钛的研究[J]. 现代化工, 2021, 41(4): 103-106,111.
[8] 米东伯, 周权宝, 许俊强, 毛逸轩, 魏炳清, 董晓峰, 刘坤. C—H键活化苯一步合成苯酚的研究[J]. 现代化工, 2021, 41(4): 117-121.
[9] 胡嘉伟, 石山. 聚(甲基丙烯酸甲酯)/聚乙烯亚胺-Cu2+微粒的制备及其在苯酚湿法催化氧化中的应用[J]. 现代化工, 2021, 41(3): 98-104.
[10] 刘艳花, 王娜, 王晓东, 黄伟. PVA/PVP共混交联膜对2-甲基四氢呋喃溶液渗透汽化脱水的研究[J]. 现代化工, 2021, 41(2): 183-187.
[11] 王晓东, 刘健, 宋智谦, 孙毓韬, 李艳秋, 乔奇伟. 微通道反应器中合成2,4-二甲基-6-硝基苯酚的连续流工艺的研究[J]. 现代化工, 2021, 41(11): 188-191.
[12] 霍宇辰, 张茜, 王晓东, 黄伟. 基于MOFs的混合基质膜在渗透汽化中的研究进展[J]. 现代化工, 2020, 40(S1): 33-38,44.
[13] 陈庭胜, 杜朕屹. 多级孔ZSM-5分子筛催化异丙基苯酚脱烷基反应研究[J]. 现代化工, 2020, 40(S1): 92-97.
[14] 李同辉, 左轶, 杨丽倩, 刘民, 郭新闻. 干胶转化法制备大孔/微孔复合钛硅分子筛[J]. 现代化工, 2020, 40(S1): 111-116.
[15] 陈思龙, 周志辉, 吴红丹, 杜奕锦, 刘宏瑞. ZSM-5/NaY型复合分子筛膜的制备及其渗透汽化性能研究[J]. 现代化工, 2020, 40(7): 187-191,196.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备09035943号-37
版权所有 © 《现代化工》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn