Please wait a minute...
 
最新公告: 重要提醒:骗子冒充编辑部要求加作者微信,谨防上当!   关于暑假、寒假期间版面费发票及期刊样刊延迟邮寄的通知    
现代化工  2022, Vol. 42 Issue (7): 70-74    DOI: 10.16606/j.cnki.issn0253-4320.2022.07.015
  技术进展 本期目录 | 过刊浏览 | 高级检索 |
定向冷冻铸造制备三维石墨烯基复合材料的研究进展
俞泽民, 姚顺, 张家豪, 沈松, 王浩泽, 郎士轩
哈尔滨理工大学材料科学与化学工程学院, 黑龙江 哈尔滨 150040
Preparation and applications of three-dimensional graphene-based composites prepared by directional freeze casting
YU Ze-min, YAO Shun, ZHANG Jia-hao, SHEN Song, WANG Hao-ze, LANG Shi-xuan
School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, China
下载:  PDF (7922KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 针对三维石墨烯及其复合材料广泛的应用前景,总结了以定向冷冻铸造法制备三维石墨烯基复合材料的研究进展,重点介绍了基于定向冷冻法的三维石墨烯基材料在吸附介质、隔热/导热、传感和储能等领域的应用概况,展望了定向冷冻铸造技术在石墨烯及其复合材料领域的发展方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
俞泽民
姚顺
张家豪
沈松
王浩泽
郎士轩
关键词:  定向冷冻铸造  三维石墨烯  复合材料  微观结构    
Abstract: Three-dimensional graphene and its composites have been widely studied because of their unique structure and excellent properties.Research progress in the preparation of three-dimensional graphene-based composites by directional freezing casting method is summarized.The applications of the composites in adsorption media,thermal insulation/conduction,sensing and energy storage are highlighted.The development direction of directional freezing technology in graphene and its composites is prospected.
Key words:  directional freeze casting    three-dimensional graphene    composite    microstructure
收稿日期:  2021-06-24      修回日期:  2022-05-10           出版日期:  2022-07-20
ZTFLH:  TB332  
基金资助: 国家大学生创新创业训练计划项目(202010214026);教育部"春晖计划"(HLJ2019007)
通讯作者:  俞泽民(1961-),男,博士,教授,研究方向为新型纳米材料及其在储能方向的应用,通讯联系人,yuzem222@163.com。    E-mail:  yuzem222@163.com。
引用本文:    
俞泽民, 姚顺, 张家豪, 沈松, 王浩泽, 郎士轩. 定向冷冻铸造制备三维石墨烯基复合材料的研究进展[J]. 现代化工, 2022, 42(7): 70-74.
YU Ze-min, YAO Shun, ZHANG Jia-hao, SHEN Song, WANG Hao-ze, LANG Shi-xuan. Preparation and applications of three-dimensional graphene-based composites prepared by directional freeze casting. Modern Chemical Industry, 2022, 42(7): 70-74.
链接本文:  
https://www.xdhg.com.cn/CN/10.16606/j.cnki.issn0253-4320.2022.07.015  或          https://www.xdhg.com.cn/CN/Y2022/V42/I7/70
[1] Geim A K,Novoselov K S.The rise of graphene[J].Nature Materials,2007,6(3):183-191.
[2] Qiu H J,Guan Y X,Luo P,et al.Recent advance in fabricating monolithic 3D porous graphene and their applications in biosensing and biofuel cells[J].Biosensors and Bioelectronics,2017,89:85-95.
[3] Cao X H,Yin Z Y,Zhang H.Three-dimensional graphene materials:Preparation,structures and application in supercapacitors[J].Energy&Environmental Science,2014,7(6):1850-1865.
[4] Chen Z P,Xu C,Ma C Q,et al.Lightweight and flexible graphene foam composites for high-performance electromagnetic interference shielding[J].Advanced Materials,2013,25(9):1296-1300.
[5] Liu T,Huang M L,Li X F,et al.Highly compressible anisotropic graphene aerogels fabricated by directional freezing for efficient absorption of organic liquids[J].Carbon,2016,100:456-464.
[6] Shahbazi M A,Ghalkhani M,Maleki H.Directional freeze-casting:A bioinspired method to assemble multifunctional aligned porous structures for advanced applications[J].Advanced Engineering Materials,2020,22(7):2000033.
[7] Scotti K L,Dunand D C.Freeze casting-A review of processing,microstructure and properties via the open data repository,FreezeCasting.net[J].Progress in Materials Science,2018,94:243-305.
[8] Nelson I,Naleway S E.Intrinsic and extrinsic control of freeze casting[J].Journal of Materials Research and Technology,2019,8(2):2372-2385.
[9] Zhang P P,Li J,Lv L X,et al.Vertically aligned graphene sheets membrane for highly efficient solar thermal generation of clean water[J].ACS nano,2017,11(5):5087-5093.
[10] Bai H,Walsh F,Gludovatz B,et al.Bioinspired hydroxyapatite/poly (methyl methacrylate) composite with a nacre-mimetic architecture by a bidirectional freezing method[J].Advanced Materials,2016,28(1):50-56.
[11] Yang M,Zhao N F,Cui Y,et al.Biomimetic architectured graphene aerogel with exceptional strength and resilience[J].ACS Nano,2017,11(7):6817-6824.
[12] Wang C H,Chen X,Wang B,et al.Freeze-casting produces a graphene oxide aerogel with a radial and centrosymmetric structure[J].ACS Nano,2018,12(6):534-555.
[13] Qiu L,Liu J Z,Chang S L Y,et al.Biomimetic superelastic graphene-based cellular monoliths[J].Nature Communications,2012,3(1):1241.
[14] Chaichanawong J,Kongcharoen K,Areerat S.Preparation of carbon aerogel microspheres by a simple-injection emulsification method[J].Advanced Powder Technology,2013,24(5):891-896.
[15] Cai H L,Sharma S,Liu W Y,et al.Aerogel microspheres from natural cellulose nanofibrils and their application as cell culture scaffold[J].Biomacromolecules,2014,15(7):2540-2547.
[16] Yu R M,Shi Y Z,Yang D Z,et al.Graphene oxide/chitosan aerogel microspheres with honeycomb cobweb and eadially oriented microchannel structures for broad spectrum and rapid adsorption of water contaminants[J].ACS Applied Materials&Interfaces,2017,9(26):21809-21819.
[17] Shao Y L,El-Kady M F,Lin C W,et al.3D freeze-casting of cellular graphene films for ultrahigh-power-density supercapacitors[J].Advanced Materials,2016,28(31):6719-6726.
[18] Qian L,Ahmed A,Foster A,et al.Systematic tuning of pore morphologies and pore volumes in macroporous materials by freezing[J].Journal of Materials Chemistry,2009,19(29):5212-5219.
[19] Wang J L,Gao X L,Wang Y H,et al.Novel graphene oxide sponge synthesized by freeze-drying process for the removal of 2,4,6-trichlorophenol[J].RSC Advances,2014,4(101):57476-57482.
[20] Ouyang A,Wang C H,Wu S T,et al.Highly porous core-shell structured graphene-chitosan beads[J].ACS Applied Materials&Interfaces,2015,7(26):14439-14445.
[21] Peng Q Y,Qin Y Y,Zhao X,et al.Superlight,mechanically flexible,thermally superinsulating,and antifrosting anisotropic nanocomposite foam based on hierarchical graphene oxide assembly[J].ACS Applied Materials&Interfaces,2017,9(50):44010-44017.
[22] Lian G,Tuan C C,Li L Y,et al.Vertically aligned and interconnected graphene networks for high thermal conductivity of epoxy composites with ultralow loading[J].Chemistry of Materials,2016,28(17):6096-6104.
[23] Zhao N F,Yang M,Zhao Q,et al.Superstretchable nacre-mimetic graphene/poly (vinyl alcohol) composite film based on interfacial architectural engineering[J].ACS Nano,2017,11(5):4777-4784.
[24] Zang Y P,Zhang F J,Di C A,et al.Advances of flexible pressure sensors toward artificial intelligence and health care applications[J].Materials Horizons,2015,2(2):140-156.
[25] Shao Y L,Wang H Z,Zhang Q H,et al.Fabrication of large-area and high-crystallinity photoreduced graphene oxide films via reconstructed two-dimensional multilayer structures[J].Npg Asia Materials,2014,6(8):e119.
[26] Gan S Y,Zhong L J,Wu T S,et al.Spontaneous and fast growth of large-area graphene nanofilms facilitated by oil/water interfaces[J].Advanced Materials,2012,24(29):3958-3964.
[27] Yang X W,Zhu J W,Qiu L,et al.Bioinspired effective prevention of restacking in multilayered graphene films:Towards the next generation of high-performance supercapacitors[J].Advanced Materials,2011,23(25):2833-2838.
[28] Gunes F,Shin H J,Biswas C,et al.Layer-by-layer doping of few-layer graphene film[J].ACS Nano,2010,4(8):4595-4600.
[29] Wang X B,Zhang Y J,Zhi C Y,et al.Three-dimensional strutted graphene grown by substrate-free sugar blowing for high-power-density supercapacitors[J].Nature Communications,2013,4(1):2905.
[30] Wang Q R,Wang X Y,Wan F,et al.An all-freeze-casting strategy to design typographical supercapacitors with integrated architectures[J].Small,2018,14(23):1800280.
[1] 赵白云, 刘泽, 刘小凯, 史奇, 刘燕蓉, 王丽. LNC/MMT纳米复合材料处理高浓度味精废水的研究[J]. 现代化工, 2022, 42(7): 152-157.
[2] 郑鹏坤, 王黎, 余杨. 基于氧化石墨烯和亚氧化钛的纳米复合材料用于脱盐的研究[J]. 现代化工, 2022, 42(7): 176-181.
[3] 方桂花, 孙鹏博, 于孟欢, 张文涛, 谭心. 石蜡-纳米粒子复合相变材料的研究进展与应用[J]. 现代化工, 2022, 42(5): 68-71.
[4] 尹富强, 赵玉辰, 李赵春. 碳系填料改性导电聚合物复合材料的研究进展[J]. 现代化工, 2022, 42(4): 39-42,47.
[5] 田爱芬, 孙悦, 王茜茜, 李佳华, 张新荣, 王洪彦. IPMC柔性驱动材料研究进展[J]. 现代化工, 2022, 42(4): 48-52.
[6] 赵志红, 张燕娟, 黄祖强, 胡华宇. Cu-Fe@C复合材料的制备及其光芬顿催化降解硝基苯研究[J]. 现代化工, 2022, 42(3): 123-127,132.
[7] 陈晓雯, 罗驹华, 江陈烨, 孙彩红. NiCo2O4/BPC复合材料的制备及吸波性能研究[J]. 现代化工, 2022, 42(1): 140-144.
[8] 韩琼, 曹文全, 朱超, 张瑞. 双Z型PANI/BiOBr/ZnFe2O4光催化剂在可见光下对有机污染物的光催化降解和氧化还原活性研究[J]. 现代化工, 2022, 42(1): 206-212,217.
[9] 李根, 李国宇, 李培礼, 朱广军. 纳米SiO2的表面改性及SiO2/WEPN复合材料的制备与性能研究[J]. 现代化工, 2021, 41(9): 173-177,184.
[10] 张青峰, 朱钰漕, 张焕芝, 夏永鹏, 徐芬, 孙立贤. 生物质及其衍生材料在有机复合相变储能材料中的应用[J]. 现代化工, 2021, 41(7): 56-60,67.
[11] 李英豪, 陆继长, 朱松山, 张迎, 罗永明. 铁酸钴材料的制备及其在环境领域中的应用研究进展[J]. 现代化工, 2021, 41(6): 27-31.
[12] 王莉娟, 赵彤瑶, 宫玉梅, 刘亚洁. 壳聚糖改性及纤维成形研究进展[J]. 现代化工, 2021, 41(6): 86-89.
[13] 余杨, 王黎, 鲁逸飞, 胡雨莎, 廖梦根. 碳纳米管/氧化石墨烯复合电极制备及除镉研究[J]. 现代化工, 2021, 41(6): 134-139.
[14] 崔涵, 罗通, 吕高金, 蒋水星, 李昌涛, 寇光智, 杨桂花. 木质素/天然多糖复合材料的应用研究进展[J]. 现代化工, 2021, 41(5): 35-39.
[15] 李彦, 李红, 王帆, 屈撑囤. 高效石油降解菌群的构建及其耐盐性能研究[J]. 现代化工, 2021, 41(5): 114-119.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备09035943号-37
版权所有 © 《现代化工》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn