Please wait a minute...
 
最新公告: 重要提醒:骗子冒充编辑部要求加作者微信,谨防上当!   关于暑假、寒假期间版面费发票及期刊样刊延迟邮寄的通知    
现代化工  2022, Vol. 42 Issue (7): 37-41,45    DOI: 10.16606/j.cnki.issn0253-4320.2022.07.008
  技术进展 本期目录 | 过刊浏览 | 高级检索 |
煤热解工艺及其增油技术研究进展
刘瑞春, 牛犇, 张君涛, 刘俊杰
西安石油大学化学化工学院, 低碳能源化工工程研究中心, 陕西 西安 710065
Advances in coal pyrolysis process and oil-enhancing technology
LIU Rui-chun, NIU Ben, ZHANG Jun-tao, LIU Jun-jie
Engineering Research Center of Low Carbon Energy & Chemical, College of Chemistry & Chemical Engineering, Xi'an Shiyou University, Xi'an 710065, China
下载:  PDF (1855KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 综述了最新的煤热解工艺和典型的煤热解增油技术,内构件移动床碎煤热解工艺和内旋式移动床煤热解新工艺适用于小颗粒低阶煤,内旋式移动床煤热解新工艺和中科院工程热物理所240 t/d固体热载体粉煤热解工艺可以更好地解决粉尘夹带的问题,双循环固体热载体工艺对不同煤种具有良好的适应性。在煤热解增油技术中,煤与其他物质共热解和甲烷活化与煤热解耦合技术更具有工业应用前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘瑞春
牛犇
张君涛
刘俊杰
关键词:    煤热解  热解工艺  增油技术    
Abstract: Latest coal pyrolysis process and typical coal pyrolysis oil enhancement technology are reviewed.The internal component moving bed coal pyrolysis process and the new internal rotation moving bed coal pyrolysis process are suitable for small particles of low rank coal.The new internal rotating moving bed coal pyrolysis process and the solid heat carrier pulverized coal pyrolysis process can solve the problem of dust entrainment.The dual-cycle solid heat carrier process has better adaptability for different coal types.As for coal pyrolysis oil-enhancing technology,the co-pyrolysis of coal and other materials,and the integrated process of coal pyrolysis with methane activation have relatively broad industrial application prospects.
Key words:  coal    coal pyrolysis    pyrolysis process    oil-enhancing technology
收稿日期:  2021-07-08      修回日期:  2022-05-01           出版日期:  2022-07-20
ZTFLH:  TQ530.2  
基金资助: 国家自然科学基金资助项目(21908175);陕西省自然科学基础研究计划陕煤联合基金资助项目(2019JLM-1);陕西省重点研发计划(2021GY-134)
通讯作者:  张君涛(1971-),男,博士,教授,研究方向为石油及煤化工工艺,通讯联系人,029-88382701,zhangjt@xsyu.edu.cn。    E-mail:  zhangjt@xsyu.edu.cn。
作者简介:  刘瑞春(1996-),男,硕士生
引用本文:    
刘瑞春, 牛犇, 张君涛, 刘俊杰. 煤热解工艺及其增油技术研究进展[J]. 现代化工, 2022, 42(7): 37-41,45.
LIU Rui-chun, NIU Ben, ZHANG Jun-tao, LIU Jun-jie. Advances in coal pyrolysis process and oil-enhancing technology. Modern Chemical Industry, 2022, 42(7): 37-41,45.
链接本文:  
https://www.xdhg.com.cn/CN/10.16606/j.cnki.issn0253-4320.2022.07.008  或          https://www.xdhg.com.cn/CN/Y2022/V42/I7/37
[1] BP世界能源统计年鉴[R].BP公司,2020.
[2] Liu S,Zhao H,Liu X,et al.Effect of a combined process on pyrolysis behavior of huolinhe lignite and its kinetic analysis[J].Fuel,2020,279:118485.
[3] Zhao H B,Jin L J,Wang M Y,et al.Integrated process of coal pyrolysis with catalytic reforming of simulated coal gas for improving tar yield[J].Fuel,2019,255:115797.
[4] Xia Y,Xing Y,Li M,et al.Studying interactions between undecane and graphite surfaces by chemical force microscopy and molecular dynamics simulations[J].Fuel,2020,269:117367.
[5] Liu P,Le J W,Zhang D X,et al.Free radical reaction mechanism on improving tar yield and quality derived from lignite after hydrothermal treatment[J].Fuel,2017,207:244-252.
[6] Zhang C,Wu R,Xu G.Coal pyrolysis for high-quality tar in a fixed-bed pyrolyzer enhanced with internals[J].Energy&Fuels,2014,28(1):236-244.
[7] 武荣成,张纯,许光文.内构件移动床碎煤热解中试产物分布特性[J].煤炭转化,2019,42(2):13-17.
[8] Zhang C,Wu R,Hu E,et al.Coal pyrolysis for high-quality tar and gas in 100 kg fixed bed enhanced with internals[J].Energy&fuels,2014,28:7294-7302.
[9] Lin L,Zhang C,Li H,et al.Pyrolysis in indirectly heated fixed bed with internals:The first application to oil shale[J].Fuel Processing Technology,2015,138:147-155.
[10] 白效言,张飏,王岩,等.低阶煤热解关键技术问题分析及研究进展[J].煤炭科学技术,2018,46(1):192-198.
[11] 白效言,曲思建,张飏,等.内旋式移动床煤热解新工艺开发及试验[J].化工进展,2020,39(3):984-991.
[12] 敬旭业,王坤,董鹏飞,等.240 t/d固体热载体粉煤热解工艺及中试研究[J].洁净煤技术,2018,24(1):50-56.
[13] Miura K,Mae K,Sakurada K,et al.Flash pyrolysis of coal following thermal pretreatment at low temperature[J].Energy&Fuels,1992,6(1):16-21.
[14] 王宁梓,徐祥,薛晓勇,等.煤加氢热解及热解焦气化特性试验研究[J].煤炭科学技术,2017,45(1):214-220.
[15] 韩峰.滇东褐煤流化床部分加氢热解的实验研究[D].北京:清华大学,2015.
[16] Canel M,Misirlioglu Z,Canel E,et al.Distribution and comparing of volatile products during slow pyrolysis and hydropyrolysis of Turkish lignites[J].Fuel,2016,186:504-517.
[17] Liu J,Hu H,Jin L,et al.Integrated coal pyrolysis with CO2 reforming of methane over Ni/MgO catalyst for improving tar yield[J].Fuel Processing Technology,2010,91(4):419-423.
[18] 董婵.煤热解与甲烷催化重整耦合过程研究[D].大连:大连理工大学,2016.
[19] 贺新福.甲烷低温等离子体活化与煤热解耦合过程研究[D].大连:大连理工大学,2012.
[20] Jin L,Li Y,Feng Y,et al.Integrated process of coal pyrolysis with CO2 reforming of methane by spark discharge plasma[J].Journal of Analytical&Applied Pyrolysis,2017,126:194-200.
[21] 王鹏飞.煤热解与甲烷二氧化碳重整耦合过程中焦油的形成机理及组成分析[D].大连:大连理工大学,2011.
[22] 靳立军,李扬,胡浩权.甲烷活化与煤热解耦合过程提高焦油产率研究进展[J].化工学报,2017,68(10):3669-3677.
[23] 李刚.基于过渡金属氧化物/USY催化剂的神东煤催化热解研究[D].西安:西北大学,2018.
[24] 杨晓霞,田大香,高增林,等.Co2+催化热解神府煤研究[J].当代化工,2018,47(9):1776-1778,1786.
[25] 张军兴,周安宁,闫宁,等.磁性Mo/HZSM-5@SiO2@Fe3O4催化剂可控制备及催化煤热解研究[J].煤炭学报,2021,46(6):1985-1994.
[26] 黄勇,刘巧霞,刘丹,等.生物质与低变质烟煤的流化床共热解及除尘技术的研究[J].洁净煤技术,2021,27(3):248-253.
[27] Hu J,Si Y,Yang H,et al.Influence of volatiles-char interactions between coal and biomass on the volatiles released,resulting char structure and reactivity during co-pyrolysis[J].Energy Conversion and Management,2017,152:229-238.
[28] 郭龙.煤与橡胶共热解产品分布和硫的迁移规律[D].大连:大连理工大学,2013.
[29] Gou X,Zhao X,Singh S,et al.Tri-pyrolysis:A thermo-kinetic characterisation of polyethylene,cornstalk,and anthracite coal using TGA-FTIR analysis[J].Fuel,2019,252:393-402.
[30] Khan A,Akhtar J,Shahzad K,et al.Co-pyrolysis and hyrdogenation of waste tires and thar coal blends[J].Energy Sources Part A Recovery Utilization and Environmental Effects,2017,39(15):1664-1670.
[1] 穆飞, 倪效磊, 乔英云, 田原宇. 煤催化热解焦油提质研究进展[J]. 现代化工, 2022, 42(7): 51-55.
[2] 徐浩然, 封立林, 李强, 欧阳丰, 冯向东, 吕佳慧. 燃煤电厂脱硫废水选择性电渗析浓缩处理中试研究[J]. 现代化工, 2022, 42(7): 236-240.
[3] 张钢强, 葛庆, 孙朋涛, 刘书缘. 变压吸附氢回收率低的原因分析及解决方法[J]. 现代化工, 2022, 42(7): 241-245,250.
[4] 张胜军, 门秀杰, 孙海萍, 刘斐齐. “双碳”背景下生物液体燃料的机遇、挑战及发展建议[J]. 现代化工, 2022, 42(6): 1-5.
[5] 王西明, 王峰, 俞华栋, 李军海, 许好好. 现代煤化工耦合可再生能源的可行性分析[J]. 现代化工, 2022, 42(6): 6-8,15.
[6] 薛海月, 王连勇, 刘向宇, 韩建丽, 何艳. 固废物粉煤灰基沸石的合成方法及应用进展[J]. 现代化工, 2022, 42(6): 20-24,29.
[7] 范乐珍, 唐佩瑶, 李钰涵, 魏凤玉. 阴离子对铁盐氧化脱除煤中硫的影响[J]. 现代化工, 2022, 42(6): 153-155,161.
[8] 陶怡, 王强, 田华, 易学睿, 冯白阳, 步学朋. 国内外大型能源化工企业低碳转型对我国煤化工产业发展的启示[J]. 现代化工, 2022, 42(4): 7-11,16.
[9] 王赛娅, 陈颖颀, 金彦礼, 于戈文. “双碳”目标下多联产技术发展方向探究[J]. 现代化工, 2022, 42(4): 12-16.
[10] 李昊洲, 李燕, 张述伟. 2种不同荒煤气衍生气中酸性气体成分脱除的低温甲醇洗工艺开发[J]. 现代化工, 2022, 42(4): 237-244.
[11] 李钊, 赵文滔, 赵毅. 催化氧化法脱除烟气污染物研究进展[J]. 现代化工, 2022, 42(3): 26-30.
[12] 董旭明, 张胜寒, 卢权, 檀玉. 电吸附除盐技术在燃煤电厂中的应用研究进展[J]. 现代化工, 2022, 42(2): 106-111.
[13] 张宇娟, 张永锋, 孙俊民, 公彦兵. 高铝粉煤灰提取氧化铝工艺研究进展[J]. 现代化工, 2022, 42(1): 66-70.
[14] 薛皓, 李航, 韩旭辉. 煤焦油综合利用现状及发展展望[J]. 现代化工, 2021, 41(S1): 105-109,113.
[15] 宋瑞, 宋峙潮, 李小刚, 和鹏飞, 陈波, 卓振州. 表面活性剂对煤层损害的实验研究[J]. 现代化工, 2021, 41(S1): 150-153,158.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备09035943号-37
版权所有 © 《现代化工》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn