Please wait a minute...
 
最新公告: 重要提醒:骗子冒充编辑部要求加作者微信,谨防上当!   关于暑假、寒假期间版面费发票及期刊样刊延迟邮寄的通知    
现代化工  2022, Vol. 42 Issue (6): 118-123    DOI: 10.16606/j.cnki.issn0253-4320.2022.06.024
  科研与开发 本期目录 | 过刊浏览 | 高级检索 |
基于多巴胺氧化聚合制备电荷相反纳米磁的研究
孟小琪, 温暖, 张伟, 左芳
西南民族大学化学与环境学院, 四川 成都 610041
Preparation of oppositely charged nanomagnets based on oxidative polymerization of dopamine
MENG Xiao-qi, WEN Nuan, ZHANG Wei, ZUO Fang
School of Chemistry & Environment, Southwest Minzu University, Chengdu 610041, China
下载:  PDF (3920KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用不同氧化条件对油/水溶性纳米磁进行聚多巴胺(PDA)功能化,合成了Fe3O4@PDA-NaIO4和Fe3O4@PDA。通过对其进行一系列表征发现,Fe3O4@PDA-NaIO4和Fe3O4@PDA均具有较好的分散性,在pH 7.0下带相反电荷(+29.9 mV和-26.3 mV);两者饱和磁化强度分别为48.80 emu/g和62.11 emu/g,磁性能良好,且均具有超顺磁性。合成的PDA功能化纳米磁有望应用于核磁共振成像、靶向药物递送等生物医学领域。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孟小琪
温暖
张伟
左芳
关键词:  多巴胺  功能化改性  相反电荷  超顺磁性  纳米磁    
Abstract: Fe3O4@PDA-NaIO4 and Fe3O4@PDA are synthesized through functionalizing oil/water soluble magnetic nanoparticles by polydopamine (PDA) under different oxidation conditions.Through a series of characterizations, it is found that both Fe3O4@PDA-NaIO4 and Fe3O4@PDA exhibit good dispersion and carry opposite charges at pH=7.0(+29.9 mV and -26.3 mV), which is due to the different compositional structures of PDA on both surfaces.In addition, the saturation magnetization intensity of these two particles is 48.80 emu·g-1 and 62.11 emu·g-1, respectively, both showing superparamagnetic.In conclusion, the synthesized PDA-functionalized magnetic nanoparticles are expected to be applied in biomedical fields such as nuclear magnetic resonance imaging and targeted drug delivery.
Key words:  dopamine    functional modification    opposite charge    nanomagnets    superparamagnetic
收稿日期:  2022-01-04      修回日期:  2022-04-02           出版日期:  2022-06-20
ZTFLH:  TB383.1  
基金资助: 国家自然科学基金面上项目(51273220);西南民族大学研究生创新型科研项目(CX2020SZ14)
通讯作者:  左芳(1980-),女,博士,研究员,研究方向为有机无机纳米杂化材料,通讯联系人,polymerzf@swun.cn。    E-mail:  polymerzf@swun.cn
作者简介:  孟小琪(1996-),女,硕士研究生,研究方向为功能化磁性材料及水凝胶,polymermxq@163.com。
引用本文:    
孟小琪, 温暖, 张伟, 左芳. 基于多巴胺氧化聚合制备电荷相反纳米磁的研究[J]. 现代化工, 2022, 42(6): 118-123.
MENG Xiao-qi, WEN Nuan, ZHANG Wei, ZUO Fang. Preparation of oppositely charged nanomagnets based on oxidative polymerization of dopamine. Modern Chemical Industry, 2022, 42(6): 118-123.
链接本文:  
https://www.xdhg.com.cn/CN/10.16606/j.cnki.issn0253-4320.2022.06.024  或          https://www.xdhg.com.cn/CN/Y2022/V42/I6/118
[1] Lu A H, Salabas E L, Schuth F.Magnetic nanoparticles:Synthesis, protection, functionalization, and application[J].Angewandte Chemie International Edition, 2007, 46(8):1222-1244.
[2] Peng S, Sun S H.Synthesis and characterization of monodisperse hollow Fe3O4 nanoparticles[J].Angewandte Chemie International Edition, 2007, 46(22):4155-4158.
[3] Gao J H, Gu H W, Xu B.Multifunctional magnetic nanoparticles:Design, synthesis, and biomedical applications[J].Accounts of Chemical Research, 2009, 42(8):1097-1107.
[4] Colombo M, Carregal-Romero S, Casula M F, et al.Biological applications of magnetic nanoparticles[J].Chemical Society Reviews, 2012, 41(11):4306-4334.
[5] Nikitin M P, Zelepukin I V, Shipunova V O, et al.Enhancement of the blood-circulation time and performance of nanomedicines via the forced clearance of erythrocytes[J].Nature Biomedical Engineering, 2020, 4(7):717-731.
[6] Cardoso V F, Francesko A, Ribeiro C, et al.Advances in magnetic nanoparticles for biomedical applications[J].Advanced Healthcare Materials, 2018, 7(5):1700845.
[7] Nicolas-Boluda A, Yang Z, Guilbert T, et al.Self-assemblies of Fe3O4 nanocrystals:Toward nanoscale precision of photothermal effects in the tumor microenvironment[J].Advanced Functional Materials, 2021, 31(4):2006824.
[8] Kim D H, Kim D W, Jang J Y, et al.Fe3O4@void@microporous organic polymer-based multifunctional drug delivery systems:Targeting, imaging, and magneto-thermal behaviors[J].ACS Applied Materials & Interfaces, 2020, 12(33):37628-37636.
[9] Luo Y, Du S N, Zhang W, et al.Core@shell Fe3O4@Mn2+-doped NaYF4:Yb/Tm nanoparticles for triple-modality T1/T2-weighted MRI and NIR-to-NIR upconversion luminescence imaging agents[J].RSC Advances, 2017, 7(60):37929-37937.
[10] Luo Y, Zhang W, Liao Z F, et al.Role of Mn2+ doping in the preparation of core-shell structured Fe3O4@upconversion nanoparticles and their applications in T1/T2-weighted magnetic resonance imaging, upconversion luminescent imaging and near-infrared activated photodynamic therapy[J].Nanomaterials, 2018, 8(7):466.
[11] Li S, Zhao X, Yu X, et al.Fe3O4 nanozymes with aptamer-tuned catalysis for selective colorimetric analysis of ATP in blood[J].Analytical Chemistry, 2019, 91(22):14737-14742.
[12] Luo K Y, Zhao J L, Jia C Z, et al.Integration of Fe3O4 with Bi2S3 for multi-modality tumor theranostics[J].ACS Applied Materials & Interfaces, 2020, 12(20):22650-22660.
[13] Zhang T B, Li G L, Miao Y Q, et al.Magnetothermal regulation of in vivo protein corona formation on magnetic nanoparticles for improved cancer nanotherapy[J].Biomaterials, 2021, 276:121021.
[14] Liu S X, Yu B, Wang S, et al.Preparation, surface functionalization and application of Fe3O4 magnetic nanoparticles[J].Advances in Colloid and Interface Science, 2020, 281:102165.
[15] Mosayebi J, Kiyasatfar M, Laurent S.Synthesis, functionalization, and design of magnetic nanoparticles for theranostic applications[J].Advanced Healthcare Materials, 2017, 6(23):1700306.
[16] Chen W J, Tsai P J, Chen Y C.Functional Fe3O4/TiO2 core/shell magnetic nanoparticles as photokilling agents for pathogenic bacteria[J].Small, 2008, 4(4):485-491.
[17] Li W, Yang J P, Wu Z X, et al.A versatile kinetics-controlled coating method to construct uniform porous TiO2 shells for multifunctional core-shell structures[J].Journal of the American Chemical Society, 2012, 134(29):11864-11867.
[18] Deng Y H, Deng C H, Qi D W, et al.Synthesis of core/shell colloidal magnetic zeolite microspheres for the immobilization of trypsin[J].Advanced Materials, 2009, 21(13):1377-1382.
[19] Shao M F, Ning F Y, Zhao J W, et al.Preparation of Fe3O4@SiO2@layered double hydroxide core-shell microspheres for magnetic separation of proteins[J].Journal of the American Chemical Society, 2012, 134(2):1071-1077.
[20] Lee H, Dellatore S M, Miller W M, et al.Mussel-inspired surface chemistry for multifunctional coatings[J].Science, 2007, 318(5849):426-430.
[21] Pérez-Mitta G, Tuninetti J S, Knoll W, et al.Polydopamine meets solid-state nanopores:A bioinspired integrative surface chemistry approach to tailor the functional properties of nanofluidic diodes[J].Journal of the American Chemical Society, 2015, 137(18):6011-6017.
[22] Du S N, Luo Y, Liao Z F, et al.New insights into the formation mechanism of gold nanoparticles using dopamine as a reducing agent[J].Journal of Colloid and Interface Science, 2018, 523:27-34.
[23] Liu F, He X, Lei Z, et al.Facile preparation of doxorubicin-loaded upconversion@polydopamine nanoplatforms for simultaneous in vivo multimodality imaging and chemophotothermal synergistic therapy[J].Advanced Healthcare Materials, 2015, 4(4):559-568.
[24] Zhang W, Liao Z F, Meng X Q, et al.Fast coating of hydrophobic upconversion nanoparticles by NaIO4-induced polymerization of dopamine:Positively charged surfaces and in situ deposition of Au nanoparticles[J].Applied Surface Science, 2020, 527:146821.
[25] D'Ischia M, Napolitano A, Pezzella A, et al.Chemical and structural diversity in eumelanins:Unexplored bio-optoelectronic materials[J].Angewandte Chemie International Edition, 2009, 48(22):3914-3921.
[26] Duan J Y, Bai L F, Xu K Z, et al.Polydopamine protected hollow nanosphere with AuAg-nanoframe-core@carbon@AuAg-nanocrystals-satellite hybrid nanostructure (AuAg@C@AuAg/PDA) for enhancing nanocatalysis[J].Journal of Hazardous Materials, 2020, 384:121276.
[27] Qin Z L, Du S N, Luo Y, et al.Hydrothermal synthesis of superparamagnetic and red luminescent bifunctional Fe3O4@Mn2+-doped NaYF4:Yb/Er core@shell monodisperse nanoparticles and their subsequent ligand exchange in water[J].Applied Surface Science, 2016, 378:174-180.
[28] An P, Zuo F, Wu Y P, et al.Fast synthesis of dopamine-coated Fe3O4 nanoparticles through ligand-exchange method[J].Chinese Chemical Letters, 2012, 23(9):1099-1102.
[29] 张伟, 左芳, 李欣华.一种通过多巴胺快速氧化聚合将油溶性纳米粒子转换为水溶性的方法:CN111205675B[P].2021-06-22.
[30] 杜思南, 罗阳, 左芳, 等.聚多巴胺包覆Fe3O4纳米粒子异相芬顿催化降解亚甲基蓝[J].精细化工, 2017, 34(6):676-681.
[31] Lin S Y, Wu S H, Chen C H.A simple strategy for prompt visual sensing by gold nanoparticles:General applications of interparticle hydrogen bonds[J].Angewandte Chemie International Edition, 2006, 45(30):4948-4951.
[32] 张伟, 廖正芳, 阿尔普丁·艾尼娃尔, 等.掺杂上转换纳米粒子的温敏性发光水凝胶的制备及性能[J].精细化工, 2020, 37(2):270-277.
[33] Xuan Y, Jiang G C, Li Y Y, et al.Inhibiting effect of dopamine adsorption and polymerization on hydrated swelling of montmorillonite[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2013, 422:50-60.
[34] Zhang C, Ou Y, Lei W X, et al.CuSO4/H2O2-induced rapid deposition of polydopamine coatings with high uniformity and enhanced stability[J].Angewandte Chemie International Edition, 2016, 55(9):3054-3057.
[35] Wilson D, Langell M A.XPS analysis of oleylamine/oleic acid capped Fe3O4 nanoparticles as a function of temperature[J].Applied Surface Science, 2014, 303:6-13.
[36] Yamashita T, Hayes P.Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials[J].Applied Surface Science, 2008, 254(8):2441-2449.
[37] Hong S, Na Y S, Choi S, et al.Non-covalent self-assembly and covalent polymerization co-contribute to polydopamine formation[J].Advanced Functional Materials, 2012, 22(22):4711-4717.
[38] Delparastan P, Malollari K G, Lee H, et al.Direct evidence for the polymeric nature of polydopamine[J].Angewandte Chemie International Edition, 2019, 58(4):1077-1082.
[39] Della Vecchia N F, Avolio R, Alfè M, et al.Building-block diversity in polydopamine underpins a multifunctional eumelanin-type platform tunable through a quinone control point[J].Advanced Functional Materials, 2013, 23(10):1331-1340.
[1] 王雯, 黄祖强, 张燕娟, 胡华宇. 纤维素/海藻酸铁@聚多巴胺复合凝胶球的制备及其光催化还原Cr6+的性能[J]. 现代化工, 2022, 42(5): 126-131.
[2] 胡子艳, 张林江, 白波, 胡娜, 王洪伦. PDA@PPHF太阳能驱动界面蒸发性能及水质净化研究[J]. 现代化工, 2022, 42(3): 149-153,158.
[3] 侯笑笑, 柴涛, 田楠, 刘悦. 新型光催化复合膜TiO2/GR/PDA的制备及性能研究[J]. 现代化工, 2022, 42(2): 188-192.
[4] 管士强, 王好斌, 侯翠红, 王艳语, 黄成东. 智能新型肥料研究进展[J]. 现代化工, 2022, 42(1): 46-50.
[5] 王通军, 蒋超, 周郁, 洪建权, 魏慧贤. 涂覆聚多巴胺层对提高薄膜复合聚酰胺膜选择性和防污性的影响[J]. 现代化工, 2021, 41(12): 170-174,179.
[6] 陈茹茹, 施冬健, 储鸿. 缓释型聚多巴胺丁香酚微球的制备及抑菌性能[J]. 现代化工, 2021, 41(12): 198-202.
[7] 田兴旺, 张琨, 张殿光, 王平, 徐士鸣. 纳米磁流体耦合金属泡沫对流换热特性研究[J]. 现代化工, 2020, 40(9): 51-55.
[8] 毛永强, 张喆双娇, 莫丽娟, 李娜. 煤基碳点“关-开”型荧光探针检测多巴胺的研究[J]. 现代化工, 2020, 40(5): 223-226.
[9] 段泽强, 王晓丽, 彭士涛. 聚多巴胺改性疏水苎麻纤维的性能研究[J]. 现代化工, 2020, 40(2): 148-152.
[10] 李遥, 闫孟飞, 郝君, 韩霞, 刘洪来. pH和温度对PDA在罗丹明B染料还原中催化性能的影响[J]. 现代化工, 2019, 39(5): 101-104,106.
[11] 王璐, 杨烨, 李亚, 韩萍芳. 可磁分离凹凸棒黏土复合材料的溶剂热法制备及表征[J]. 现代化工, 2018, 38(5): 109-111,115.
[12] 贺金梅,王凤文,张华威,吴亚东,谷红波,黄玉东. 医用可吸收止血材料的功能化改性研究进展[J]. , 2010, 30(12): 0-0.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备09035943号-37
版权所有 © 《现代化工》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn