Please wait a minute...
 
最新公告: 重要提醒:骗子冒充编辑部要求加作者微信,谨防上当!   关于暑假、寒假期间版面费发票及期刊样刊延迟邮寄的通知    
现代化工  2022, Vol. 42 Issue (6): 106-111    DOI: 10.16606/j.cnki.issn0253-4320.2022.06.022
  科研与开发 本期目录 | 过刊浏览 | 高级检索 |
CW-MFC处理六价铬废水及同步产电的研究
牟春霞1, 王琳1, 王丽2
1. 中国海洋大学环境科学与工程学院, 山东 青岛 266100;
2. 哈尔滨工业大学能源科学与工程学院, 黑龙江 哈尔滨 150001
Treatment of hexavalent chromium-containing wastewater by CW-MFC and simultaneous power generation
MU Chun-xia1, WANG Lin1, WANG Li2
1. College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China;
2. School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
下载:  PDF (1564KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 利用人工湿地型微生物燃料电池(CW-MFC)处理六价铬[Cr (Ⅵ)]废水可实现同步产电。考察了不同电极间距下COD质量浓度、Cr (Ⅵ)质量浓度及水力停留时间(HRT)对处理含铬废水及同步产电的影响。结果表明,随着COD和Cr (Ⅵ)质量浓度的增大,CW-MFC的电压先增大后减小。电极间距越小,欧姆电阻越小,但当电极间距为10 cm时系统的输出电压和功率密度最大,同时COD和Cr (Ⅵ)的去除率最高。随着HRT的延长,产电性能和污水处理能力先增大后减小。电极间距为10 cm时,最大功率密度和COD最高去除率分别458.24 mW/m3和92.50%(HRT为2 d),Cr (Ⅵ)最高去除率为92.96%(HRT为3 d)。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
牟春霞
王琳
王丽
关键词:  微生物燃料电池  人工湿地  六价铬  水处理  产电    
Abstract: The constructed wetland coupled with microbial fuel cell (CW-MFC) is adopted to treat with hexavalent chromium[Cr(Ⅵ)]-containing wastewater and simultaneously generate power.The effects of COD mass concentration, Cr(Ⅵ) mass concentration and hydraulic retention time (HRT) on the treatment of chromium-containing wastewater and the simultaneous production of electricity at different electrode spacing are investigated.It is shown that the voltage of CW-MFC increases firstly and decreases then with the increases of COD and Cr(Ⅵ) mass concentrations.The smaller the electrode spacing, the smaller the ohmic resistance.The output voltage and power density of the system reaches the maximum, and the removal rates of COD and Cr(Ⅵ) reach the highest when the electrode spacing is 10 cm.With the elongation of HRT, the power production performance and wastewater treatment capacity increases firstly and decreases then.As the electrode spacing is 10 cm, the maximum power density and the highest removal rate of COD are 458.24 mW·m-3 and 92.50% (HRT=2 d), respectively, and the maximum removal rate of Cr(Ⅵ) is 92.96% (HRT=3 d).
Key words:  microbial fuel cell    constructed wetland    hexavalent chromium    water treatment    electricity generation
收稿日期:  2021-07-01      修回日期:  2022-03-30           出版日期:  2022-06-20
ZTFLH:  X53  
基金资助: 国家留学基金管理委员会资助项目(20120370391);国家重点研发计划项目(2018YFC0408000,2018YFC0408004)
通讯作者:  王琳(1966-),女,博士,教授,研究方向为水资源利用与水污染控制技术,通讯联系人,lwang@ouc.edu.cn。    E-mail:  lwang@ouc.edu.cn
作者简介:  牟春霞(1990-),女,博士研究生,研究方向为水污染处理,muchxia2014@126.com。
引用本文:    
牟春霞, 王琳, 王丽. CW-MFC处理六价铬废水及同步产电的研究[J]. 现代化工, 2022, 42(6): 106-111.
MU Chun-xia, WANG Lin, WANG Li. Treatment of hexavalent chromium-containing wastewater by CW-MFC and simultaneous power generation. Modern Chemical Industry, 2022, 42(6): 106-111.
链接本文:  
https://www.xdhg.com.cn/CN/10.16606/j.cnki.issn0253-4320.2022.06.022  或          https://www.xdhg.com.cn/CN/Y2022/V42/I6/106
[1] Li Z, Ma Z, Van Der Kuijp T J, et al.A review of soil heavy metal pollution from mines in China:Pollution and health risk assessment[J].Science of The Total Environment, 2014, 468-469:843-853.
[2] Hellerich L A, Nikolaidis N P, Dobbs G M.Evaluation of the potential for the natural attenuation of hexavalent chromium within a sub-wetland ground water[J].Journal of Environmental Management, 2008, 88(4):1513-1524.
[3] Zhitkovich A.Chromium in drinking water:Sources, metabolism, and cancer risks[J].Chemical Research in Toxicology, 2011, 24(10):1617-1629.
[4] Saha R, Nandi R, Saha B.Sources and toxicity of hexavalent chromium[J].Journal of Coordination Chemistry, 2011, 64(10):1782-1806.
[5] 马前, 张小龙.国内外重金属废水处理新技术的研究进展[J].环境工程学报, 2007, 1(7):10-14.
[6] Abourached C, Catal T, Liu H.Efficacy of single-chamber microbial fuel cells for removal of cadmium and zinc with simultaneous electricity production[J].Water Research, 2014, 51(15):228-233.
[7] Qian Y, Huang L, Pan Y, et al.Dependency of migration and reduction of mixed Cr2O72-, Cu2+ and Cd2+ on electric field, ion exchange membrane and metal concentration in microbial fuel cells[J].Separation and Purification Technology, 2018, 192:78-87.
[8] Guan C Y, Tseng Y H, Tsang D C W, et al.Wetland plant microbial fuel cells for remediation of hexavalent chromium contaminated soils and electricity production[J].Journal of Hazardous Materials, 2019, 365:137-145.
[9] Zhao S, Liu P, Niu Y, et al.A novel early warning system based on a sediment microbial fuel cell for in situ and real time hexavalent chromium detection in industrial wastewater[J].Sensors, 2018, 18(2):1-15.
[10] Li X, Song H, Xiang W, et al.Electricity generation during wastewater treatment by a microbial fuel cell coupled with constructed wetland[J].Journal of Southeast University (English Edition), 2012, 28(2):175-178.
[11] Habibul N, Hu Y, Wang Y K, et al.Bioelectrochemical chromium(Ⅵ) removal in plant-microbial fuel cells[J].Environmental Science & Technology, 2016, 50(7):3882-3889.
[12] Zhao C, Shang D, Zou Y, et al.Changes in electricity production and microbial community evolution constructed wetland-microbial fuel cell exposed to wastewater containing Pb(Ⅱ)[J].Science of the Total Environment, 2020, 732:139127.
[13] Yadav A K, Dash P, Mohanty A, et al.Performance assessment of innovative constructed wetland-microbial fuel cell for electricity production and dye removal[J].Ecological Engineering, 2012, 47:126-131.
[14] 王同悦, Doherty L, 赵晓红, 等.人工湿地/微生物燃料电池技术的发展现状[J].中国给水排水, 2015, 031(17):129-136.
[15] 方舟.人工湿地型微生物燃料电池同步降解偶氮染料与产电的特性及机理[D].南京:东南大学, 2017.
[16] Xu L, Zhao Y, Fan C, et al.First study to explore the feasibility of applying microbial fuel cells into constructed wetlands for COD monitoring[J].Bioresource Technology, 2017, 243:846-854.
[17] Xu F, Ouyang D L, Rene E R, et al.Electricity production enhancement in a constructed wetland-microbial fuel cell system for treating saline wastewater[J].Bioresource Technology, 2019, 288:121462.
[18] Vaiopoulou E, Gikas P.Effects of chromium on activated sludge and on the performance of wastewater treatment plants:A review[J].Water Research, 2012, 46(3):549-570.
[19] Carlos, Cervantes, Jesús, et al.Interactions of chromium with microorganisms and plants[J].Fems Microbiology Reviews, 2001, 25(3):335-347.
[20] Wang X, Tian Y, Liu H, et al.Optimizing the performance of organics and nutrient removal in constructed wetland-microbial fuel cell systems[J].Science of The Total Environment, 2019, 653:860-871.
[21] Liu L, Chou T Y, Lee C Y, et al.Performance of freshwater sediment microbial fuel cells:Consistency[J].International Journal of Hydrogen Energy, 2016, 41(7):4504-4508.
[22] Fang Z, Cheng S, Cao X, et al.Effects of electrode gap and wastewater condition on the performance of microbial fuel cell coupled constructed wetland[J].Environmental Technology Letters, 2016, 38(8):1051-1060.
[23] Li H, Song H L, Yang X L, et al.A continuous flow MFC-CW coupled with a biofilm electrode reactor to simultaneously attenuate sulfamethoxazole and its corresponding resistance genes[J].Science of The Total Environment, 2018, 637-638:295-305.
[24] Fang Z, Song H L, Cang N, et al.Electricity production from Azo dye wastewater using a microbial fuel cell coupled constructed wetland operating under different operating conditions[J].Biosensors and Bioelectronics, 2015, 68:135-141.
[1] 于攀, 余健, 谢建军. 三维电极技术在废水处理中的研究与应用进展[J]. 现代化工, 2022, 42(6): 78-82.
[2] 吴逸, Saffian Abu, 李红林, 沈舒苏, 张干伟. UiO-66(Zr)型改性膜在水处理中的研究进展[J]. 现代化工, 2022, 42(4): 28-32,38.
[3] 刘楚玉, 黄自力, 袁晨光, 朱超波, 肖硕, 黄涛. 磁分离技术在水处理中的应用[J]. 现代化工, 2022, 42(4): 72-76.
[4] 祁伟健, 张胜寒, 王若彤, 王智麟, 董旭明. 正渗透膜研究进展及其在电厂水处理中的应用[J]. 现代化工, 2022, 42(1): 85-89.
[5] 左雨欣, 楼俊兰, 徐文杰, 陈洪宇, 任晓聪. 人造沸石的改性及其在废水除磷中的应用[J]. 现代化工, 2021, 41(S1): 261-264.
[6] 齐亚兵, 张思敬, 杨清翠. 正渗透水处理技术研究现状及进展[J]. 现代化工, 2021, 41(8): 52-57.
[7] 李靖, 王瑜, 余艳, 邱超, 吴光亮, 陈艳, 杨华美. AlgCa/TiO2凝珠吸附-紫外光催化协同去除水中Cr(Ⅵ)的研究[J]. 现代化工, 2021, 41(8): 128-132,138.
[8] 徐文媛, 李素颖, 汪焱, 程永兵, 沈蒙莎, 彭家喜, 陈曦. 微污染水源水处理技术研究进展[J]. 现代化工, 2021, 41(7): 51-55.
[9] 尹楚杰, 吕源财, 潘文斌. 人工湿地填料在废水中脱氮除磷的应用研究进展[J]. 现代化工, 2021, 41(7): 68-71.
[10] 李柳, 黄李金鸿, 黄万抚, 包亚晴. 碳纳米管的改性及在水处理领域中的应用与回收[J]. 现代化工, 2021, 41(7): 95-98,102.
[11] 宋文彦, 左华江, 唐春怡, 徐然. 壳聚糖纳滤膜的制备及在水处理中的应用[J]. 现代化工, 2021, 41(5): 64-67,72.
[12] 吕志超, 宋秀兰, 席玉鹤, 苏小莉, 董文艺, 孙飞云. 可调容积型多级AO工艺模拟仿真系统的构建及其稳定调控研究[J]. 现代化工, 2021, 41(4): 194-199.
[13] 王义安, 王超, 林华, 张学洪, Kong CHHUON. 人工湿地与微生物燃料电池耦合系统的研究进展[J]. 现代化工, 2021, 41(3): 21-25.
[14] 陈稳稳, 牛恒, 刘中良. 一体式无粘结剂rGO@MnO2不锈钢纤维毡空气阴极的制备[J]. 现代化工, 2021, 41(3): 88-91.
[15] 李跃平, 刘玉香. 我国微污染水源地污染现状及其处理技术研究进展[J]. 现代化工, 2021, 41(10): 42-46.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备09035943号-37
版权所有 © 《现代化工》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn