Please wait a minute...
 
最新公告: 重要提醒:骗子冒充编辑部要求加作者微信,谨防上当!   关于暑假、寒假期间版面费发票及期刊样刊延迟邮寄的通知    
现代化工  2022, Vol. 42 Issue (6): 64-68    DOI: 10.16606/j.cnki.issn0253-4320.2022.06.014
  技术进展 本期目录 | 过刊浏览 | 高级检索 |
本征型自修复高分子材料研究进展
徐建强, 傅佳骏
南京理工大学化工学院, 江苏 南京 210094
Research progress on intrinsic self-healing polymer materials
XU Jian-qiang, FU Jia-jun
School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, China
下载:  PDF (1398KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 介绍了自修复材料的研究现状,综述了最近几年基于Diels-Alder反应、二硫键、硼酸酯键等可逆共价键以及氢键、金属配位键、π-π堆积等可逆非共价键的本征型自修复材料的设计制备。展望了基于动态键的自修复聚合物的前景和挑战。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
徐建强
傅佳骏
关键词:  本征型  自修复  共价键  非共价键  聚合物    
Abstract: This paper introduces the research status of self-healing materials, and reviews the design and preparation of intrinsic self-healing materials based on reversible covalent bonds such as Diels-Alder reaction, disulfide bond and borate ester bond, and reversible non-covalent bonds such as hydrogen bond, metal coordination bond and π-π stacking.The prospects and challenges for self-healing polymers based on dynamic bonds are predicted.
Key words:  intrinsic type    self-healing    covalent bond    non-covalent bond    polymer
收稿日期:  2021-06-09      修回日期:  2022-04-05           出版日期:  2022-06-20
ZTFLH:  150.4530  
通讯作者:  傅佳骏(1980-),男,硕士,教授,研究方向为本征型自修复高分子材料的设计和作用机理研究,通讯联系人,fujiajun668@gmail.com。    E-mail:  fujiajun668@gmail.com
作者简介:  徐建强(1997-),男,硕士生。
引用本文:    
徐建强, 傅佳骏. 本征型自修复高分子材料研究进展[J]. 现代化工, 2022, 42(6): 64-68.
XU Jian-qiang, FU Jia-jun. Research progress on intrinsic self-healing polymer materials. Modern Chemical Industry, 2022, 42(6): 64-68.
链接本文:  
https://www.xdhg.com.cn/CN/10.16606/j.cnki.issn0253-4320.2022.06.014  或          https://www.xdhg.com.cn/CN/Y2022/V42/I6/64
[1] Ghosh B, Urban M.Self-repairing oxetane-substituted chitosan polyurethane networks[J].Science, 2009, 323(5920):1458-1460.
[2] White S R, Sottos N R, Geubelle P H, et al.Autonomic healing of polymer composites[J].Nature, 2001, 409(6822):794-797.
[3] Chew X X, Dam M A, Ono K J, et al.A thermally re-mendable cross-linked polymeric material[J].Science, 2002, 295(5560):1698-1702.
[4] Chew X X, Wudl F, Mai A K, et al.New thermally remendable highly cross-linked polymeric materials[J].Macromolecules, 2003, 36(6):1802-1807.
[5] Zhang B, Digby Z A, Flum J A, et al.Self-healing, malleable and creep limiting materials using both supramolecular and reversible covalent linkages[J].Polymer Chemistry, 2015, 6(42):7368-7372.
[6] Nevejans S, Ballard N, Miranda J I, et al.The underlying mechanisms for self-healing of poly (disulfide)s[J].Physical Chemistry Chemical Physics, 2016, 18(39):27577-27583.
[7] Lai Y, Kuang X, Zhu P, et al.Colorless, transparent, robust, and fast scratch-self-healing elastomers via a phase-locked dynamic bonds design[J].Advanced Materials, 2018, 30(38):1802556.
[8] Yesilyurt V, Webber M J, Appel E A, et al.Injectable self-healing glucose-responsive hydrogels with ph-regulated mechanical properties[J].Advanced Materials, 2016, 28(1):86-91.
[9] Zeng Y, Zhu C Y, Tao L.Stimuli-responsive multifunctional phenylboronic acid polymers via multicomponent reactions:From synthesis to application[J].Macromolecular Rapid Communication, 2021:2100022.
[10] Cash J J, Kubo T, Babat A P, et al.Room-temperature self-healing polymers based on dynamic-covalent boronic esters[J].Macromolecules, 2015, 48(7):2098-2106.
[11] Kim C, Ejima B, Yoshie N.Polymers with autonomous self-healing ability and remarkable reprocessability under ambient humidity conditions[J].Journal of Materials Chemist A, 2018, (40):19269-19864.
[12] Lai J C, Mei J F, Jia X Y, et al.A stiff and healable polymer based on dynamic-covalent boroxine bonds[J].Advanced Materials, 2016, 28(37):8277-8282.
[13] Liu Y S, Liu Y G, Wang Q X, et al.Doubly dynamic hydrogel formed by combining boronate ester and acylhydrazone bonds[J].Polymers, 2020, 12(2):487-493.
[14] Neda K, Norman D, Harald R.Improving kinetics of "click-crosslinking" for self-Healing nanocomposites by graphene-supported Cu-Nanoparticles[J].Polymer Science, 2018, 10(1):17-26.
[15] Zhang Z, Wang X L, Wang Y T, et al.Rapid-forming and self-healing agarose-based hydrogels for tissue adhesives and potential wound dressings[J].BioMacromolecules, 2018, 19(3):980-988.
[16] Beiger F H, Beiger F H, Sijbesma R P, et al.Strong dimerization of ureidopyrimidones via quadruple hydrogen bonding[J].Journal of the American Chemical Society, 1998, 120(27):6761-6769.
[17] Yan X, Wang F, Zheng B, et al.Stimuli-responsive supramolecular polymeric materials[J].Chemical Society Reviews, 2012, 41(18):6042-6065.
[18] Cordier P, Tournilhac F, Soulié-Ziakovic C, et al.Self-healing and thermoreversible rubber from supramolecular assembly[J].Nature, 2008, 451(7181):977-980.
[19] Yanagisawa Y, Nan Y, Okuro K, et al.Mechanically robust, readily repairable polymers via tailored noncovalent cross-linking[J].Science, 2018, 359(6371):72-76.
[20] Xu J H, Ye S, Ding C D, et al.Autonomous self-healing supramolecular elastomer reinforced and toughened by graphitic carbon nitride nanosheets tailored for smart anticorrosion coating applications[J].Journal of Materials Chemistry A, 2018, 6(14):5887-5898.
[21] Goh Y J.Metallo-supramolecular block copolymer micelles[J].Coordination Chemistry Review, 2009, 253(17/18):2214-2225.
[22] Pearson R G.Hard and soft acids and bases[J].Journal of the American Chemical Society, 1963, 85(22):3533-3539.
[23] Lai J C, Li L, Wang D P, et al.A rigid and healable polymer cross-linked by weak but abundant Zn(Ⅱ)-carboxylate interactions[J].Nature Communications, 2018, 9(1):1-9.
[24] Burattini S, Colquhoun H M, Fox J D, et al.A self-repairing, supramolecular polymer system:Healability as a consequence of donor-acceptor π-π stacking interactions[J].Chemical Communications, 2009, (44):6717-6719.
[25] Burattini S, Greenaled B W, Hayes W, et al.A supramolecular polymer based on tweezer-type π-π stacking interactions:Molecular design for healability and enhanced toughness[J].Chemistry of Materials, 2011, 23(1):6-8.
[26] Zhuang M M, Xu D H, Yan X Z, et al.Self-healing supramolecular gels formed by crown ether based host-guest interactions[J].Angewandte Chemie International Edition, 2012, 51(28):7011-7015.
[27] Yu S, Zuo H L, Xu X W, et al.Self-Healable silicone elastomer based on the synergistic effect of the coordination and ionic bonds[J].ACS Applied Polymer Materials, 2021, 3(5):2667-2677.
[1] 杜春保, 蔡雨秀, 燕永利, 高明慧. 新型化学驱油技术研究进展[J]. 现代化工, 2022, 42(6): 35-39.
[2] 张以民, 刘洋, 陈侣, 张雄志. 超分子水凝胶原位制备纳米镍及其在对硝基苯酚催化还原中的应用[J]. 现代化工, 2022, 42(6): 124-128,134.
[3] 尚玲, 甄学乐, 全红平, 田海洋, 邓顺杰. 一种自增稠酸化转向聚合物的研究[J]. 现代化工, 2022, 42(5): 162-166,171.
[4] 尹富强, 赵玉辰, 李赵春. 碳系填料改性导电聚合物复合材料的研究进展[J]. 现代化工, 2022, 42(4): 39-42,47.
[5] 田爱芬, 孙悦, 王茜茜, 李佳华, 张新荣, 王洪彦. IPMC柔性驱动材料研究进展[J]. 现代化工, 2022, 42(4): 48-52.
[6] 景联鹏, 顾丽莉, 唐徐禹, 黄智华, 李江舟, 李增良, 彭健. 分子印迹模板分子类型研究进展[J]. 现代化工, 2022, 42(3): 59-63.
[7] 谭俊玉, 艾照全. 7 nm高分辨率极紫外光刻胶研究新进展[J]. 现代化工, 2022, 42(3): 79-84.
[8] 蔡丽军, 沈凯莉, 许军, 任满年, 曹发海. 球形聚合物刷对卟啉镍的脱除规律研究[J]. 现代化工, 2022, 42(3): 128-132.
[9] 吴奕璇, 尹大学, 王宝燕, 崔香. 基于超支化聚合物水凝胶的研究进展[J]. 现代化工, 2022, 42(1): 35-39,45.
[10] 张园, 陈金梅, 李亮, 伍亚军, 王翔, 岳鹏, 张世岭, 郭继香. 耐温抗盐聚合物凝胶体系研究进展[J]. 现代化工, 2022, 42(1): 51-55,60.
[11] 王志航, 许金余, 白二雷, 任彪, 宁镱彭. 聚合物水泥基复合填缝料耐低温性能研究[J]. 现代化工, 2021, 41(S1): 173-178.
[12] 张振. 苯乙烯装置聚合物生成原因分析及对策[J]. 现代化工, 2021, 41(S1): 342-346.
[13] 刘容麟, 王红涛. 氨氮对颗粒污泥生物除磷的影响及相关机制探究[J]. 现代化工, 2021, 41(7): 144-148.
[14] 江悦, 尚宏周, 王皓卿, 袁飞, 韩利华, 孙晓然. 铅离子印迹聚合物的制备及吸附性能研究[J]. 现代化工, 2021, 41(5): 143-147,152.
[15] 张家晶, 郑永杰, 金春雪, 杨万丽, 崔婷婷, 王雪, 王永鹤. g-C3N4基光催化剂改性的研究进展[J]. 现代化工, 2021, 41(3): 42-47.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备09035943号-37
版权所有 © 《现代化工》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn