Please wait a minute...
 
最新公告: 重要提醒:骗子冒充编辑部要求加作者微信,谨防上当!   关于暑假、寒假期间版面费发票及期刊样刊延迟邮寄的通知    
现代化工  2022, Vol. 42 Issue (6): 59-63,68    DOI: 10.16606/j.cnki.issn0253-4320.2022.06.013
  技术进展 本期目录 | 过刊浏览 | 高级检索 |
油水分离膜的应用与研究进展
孙玉凤, 徐海波
中海油天津化工研究设计院有限公司, 天津 300131
Application and research progress on oil-water separation membrane
SUN Yu-feng, XU Hai-bo
CenerTech Tianjin Chemical Research and Design Institute Co., Ltd., Tianjin 300131, China
下载:  PDF (3637KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 基于当下各种研究,从膜的润湿性、过滤通量和抗污能力等方面综合分析和评价了3种油水分离膜的研究现状,并对油水分离膜的发展趋势做出了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙玉凤
徐海波
关键词:  油水分离  超疏水-超亲油膜  超亲水-超疏油膜  自清洁功能膜    
Abstract: Based on various current studies, the research status for three kinds of oil-water separation membrane is comprehensively analyzed and evaluated from the aspects of membrane wetting property, filtration flux and anti-pollution ability, and the development trend of oil-water separation membrane is proposed.
Key words:  oil-water separation    super-hydrophobic and super-oleophilic membrane    super-hydrophilic-super-oleophobic membrane    self-cleaning functional membrane
收稿日期:  2021-06-30      修回日期:  2022-04-06           出版日期:  2022-06-20
ZTFLH:  X703  
通讯作者:  孙玉凤(1988-),女,硕士,工程师,研究方向为膜法处理污水,通讯联系人,664746166@qq.com。    E-mail:  664746166@qq.com
引用本文:    
孙玉凤, 徐海波. 油水分离膜的应用与研究进展[J]. 现代化工, 2022, 42(6): 59-63,68.
SUN Yu-feng, XU Hai-bo. Application and research progress on oil-water separation membrane. Modern Chemical Industry, 2022, 42(6): 59-63,68.
链接本文:  
https://www.xdhg.com.cn/CN/10.16606/j.cnki.issn0253-4320.2022.06.013  或          https://www.xdhg.com.cn/CN/Y2022/V42/I6/59
[1] Usman J, Othman M H D, Ismail A F, et al.An overview of superhydrophobic ceramic membrane surface modification for oil-water separation[J].Journal of Materials Research and Technology, 2021, 12:643-667.
[2] Luo Z, Duan C, Li Y, et al.A glucose modified filter paper for effective oil/water separation[J].RSC Advances, 2018, 8(52):29570-29577.
[3] Yin X, Wang Z, Shen Y, et al.Facile fabrication of superhydrophobic copper hydroxide coated mesh for effective separation of water-in-oil emulsions[J].Separation and Purification Technology, 2020, 230(115856):1-7.
[4] Matin A, Baig U, Gondal M A, et al.Facile fabrication of superhydrophobic/superoleophilic microporous membranes by spray-coating ytterbium oxide particles for efficient oil-water separation[J].Journal of Membrane Science, 2018, 548:390-397.
[5] Sumithraarachchi S A D A V, Thilakarathna B D K K, Bandara J.TiO2 encapsulated cross-linked polystyrene-polyacrylic acid membranes for waste oil-water separation[J].Journal of Environmental Chemical Engineering, 2021, 9(105394):1-12.
[6] Sun Y, Zong Y, Yang N, et al.Surface hydrophilic modification of PVDF membranes based on tannin and zwitterionic substance towards effective oil-in-water emulsion separation[J].Separation and Purification Technology, 2020, 234(116015):1-14.
[7] Baig U, Faizan M, Sajid M.Multifunctional membranes with super-wetting characteristics for oil-water separation and removal of hazardous environmental pollutants from water:A review[J].Advances in Colloid and Interface Science, 2020, 285(102276):1-20.
[8] Miller D J, Dreyer D R, Bielawski C W, et al.Surface modification of water purification membranes[J].Angewandte Chemie International Edition, 2017, 56(17):4662-4711.
[9] Teng D, Zhao T, Xu Y, et al.The zein-based fiber membrane with switchable superwettability for on-demand oil/water separation[J].Separation and Purification Technology, 2021, 263(118393):1-11.
[10] Wang M, Xu Z, Hou Y, et al.Fabrication of a superhydrophilic PVDF membrane with excellent chemical and mechanical stability for highly efficient emulsion separation[J].Separation and Purification Technology, 2020, 251(117408):1-11.
[11] Mao S, Pu H, Chen J.Graphene oxide and its reduction:Modeling and experimental progress[J].RSC Advances, 2012, 2(7):2643-2662.
[12] Thakur K, Kandasubramanian B.Graphene and graphene oxide-based composites for removal of organic pollutants:A review[J].Journal of Chemical & Engineering Data, 2019, 64(3):833-867.
[13] Lu H, Sha S, Yang S, et al.The coating and reduction of graphene oxide on meshes with inverse wettability for continuous water/oil separation[J].Applied Surface Science, 2021, 538(147948):1-7.
[14] Ding D, Mao H, Chen X, et al.U Underwater superoleophobic-underoil superhydrophobic Janus ceramic membrane with its switchable separation in oil/water emulsions[J].Journal of Membrane Science, 2018, 565:303-310.
[15] Matsubayashi T, Tenjimbayashi M, Komine M, et al.Bioinspired hydrogel-coated mesh with superhydrophilicity and underwater superoleophobicity for efficient and ultrafast oil/water separation in harsh environments[J].Industrial & Engineering Chemistry Research, 2017, 56(24):7080-7085.
[16] Gao S, Sun J, Liu P, et al.A robust polyionized hydrogel with an unprecedented underwater anti-crude-oil-adhesion property[J].Advanced Materials, 2016, 28(26):5307-5314.
[17] 高守建.抗污染亲水分离膜的设计及性能研究[D].合肥:中国科学技术大学, 2020.
[18] Zhu Y, Wang D, Jiang L, et al.Recent progress in developing advanced membranes for emulsified oil/water separation[J].NPG Asia Materials, 2014, 6(5):1-11.
[19] 郝志奋, 徐乃库, 封严, 等.聚甲基丙烯酸酯/聚丙烯酸酯共混纤维膜制备及其油水分离性能[J].纺织学报, 2020, 41(6):21-26.
[20] 张慎祥.高性能分离膜的设计及性能研究[D].合肥:中国科学技术大学, 2018.
[21] La Y H, McCloskey B D, Sooriyakumaran R, et al.Bifunctional hydrogel coatings for water purification membranes:Improved fouling resistance and antimicrobial activity[J].Journal of Membrane Science, 2011, 372(1/2):285-291.
[22] 尚茜子, 张宝泉, 李雲.不锈钢网负载Al-beta分子筛涂层的制备及其在油水分离中的应用[J].化工学报, 2019, 70(10):3994-4001.
[23] Wolters L P, Bickelhaupt F M.Halogen bonding versus hydrogen bonding:A molecular orbital perspective[J].Chemistry Open, 2012, 1(2):96-105.
[24] Kang H, Cheng Z, Lai H, et al.Superlyophobic anti-corrosive and self-cleaning titania robust mesh membrane with enhanced oil/water separation[J].Separation and Purification Technology, 2018, 201:193-204.
[25] Sun N, Zhu Z, Zeng G.Bioinspired superwetting fibrous skin with hierarchical roughness for efficient oily water separation[J].Science of the Total Environment, 2020, 744(140822):1-8.
[26] Park J H, Wang J J, Seo D C.Comparison of catalytic activity for treating recalcitrant organic pollutant in heterogeneous Fenton oxidation with iron-impregnated biochar and activated carbon[J].Journal of Water Process Engineering, 2021, 42(102141):1-9.
[27] Wang Y, Zhang J, Bao C, et al.Self-cleaning catalytic membrane for water treatment via an integration of Heterogeneous Fenton and membrane process[J].Journal of Membrane Science, 2021, 624(119121):1-12.
[28] Chen F, Shi X, Chen X, et al.An iron(Ⅱ) phthalocyanine/poly (vinylidene fluoride) composite membrane with antifouling property and catalytic self-cleaning function for high-efficiency oil/water separation[J].Journal of Membrane Science, 2018, 552:295-304.
[29] Song Y, Lang J, Guo J, et al.Preparation of carbon cloth membrane with visible light induced self-cleaning performance for oil-water separation[J].Surface and Coatings Technology, 2020, 403(126372):1-11.
[30] Xie A, Cui J, Yang J, et al.Photo-Fenton self-cleaning PVDF/NH2-MIL-88B(Fe) membranes towards highly-efficient oil/water emulsion separation[J].Journal of Membrane Science, 2020, 595(117499):1-13.
[1] 袁瑞霞, 赵晶晶, 赵志强, 吴志超, 李璐, 曹艺涵, 孔怡人. 外部刺激智能油水分离材料的研究进展[J]. 现代化工, 2022, 42(3): 46-49.
[2] 何龙, 伍亚军, 石锐, 李亮, 张潇, 黄雪莉, 王雪枫. 不同制备工艺生物质基碳气凝胶油水分离性能的研究进展[J]. 现代化工, 2021, 41(12): 32-37.
[3] 赵明杰, 刘晓静, 栗勇田. 低压高通量滤膜深度处理油田采出水试验研究[J]. 现代化工, 2020, 40(6): 204-207.
[4] 牛罗伟, 尹延梅, 戴海平, 柯永文. 油水分离膜在废润滑油再生工艺中的可行性应用[J]. 现代化工, 2020, 40(5): 133-136,142.
[5] 李璐璐, 梁欣宇, 森巴特·特尼斯别克, 李锦鹏, 何涛, 李惠军. 油水分离中静电纺纳米纤维膜应用的现状与展望[J]. 现代化工, 2019, 39(6): 59-64.
[6] 侯珂珂, 陈新华, 张万强, 赵志明. 超疏水铜网的低成本制备及油水分离应用研究[J]. 现代化工, 2017, 37(2): 137-140,142.
[7] 王雪,徐佳,蒋钰烨,高从堦. 超滤膜处理乳化油废水的研究进展[J]. , 2011, 31(6): 0-0.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备09035943号-37
版权所有 © 《现代化工》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn