Please wait a minute...
 
最新公告: 重要提醒:骗子冒充编辑部要求加作者微信,谨防上当!   关于暑假、寒假期间版面费发票及期刊样刊延迟邮寄的通知    
现代化工  2022, Vol. 42 Issue (6): 35-39    DOI: 10.16606/j.cnki.issn0253-4320.2022.06.008
  技术进展 本期目录 | 过刊浏览 | 高级检索 |
新型化学驱油技术研究进展
杜春保, 蔡雨秀, 燕永利, 高明慧
西安石油大学化学化工学院, 陕西 西安 710065
Research progress on novel chemical oil displacement technology
DU Chun-bao, CAI Yu-xiu, YAN Yong-li, GAO Ming-hui
College of Chemistry & Chemical Engineering, Xi'an Shiyou University, Xi'an 710065, China
下载:  PDF (1320KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 综述了近年来化学驱油技术中所涉及的新型驱油体系,如表面活性剂驱油、聚合物驱油、纳米流体驱油和复合体系驱油,并总结了相关驱油机理,最后对化学驱油技术的发展趋势进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杜春保
蔡雨秀
燕永利
高明慧
关键词:  化学驱油  提高原油采收率  纳米流体  聚合物    
Abstract: Chemical oil-displacement technology shows great potential in enhanced oil recovery.New types of oil-displacement system in chemical oil-displacement technology are reviewed, such as surfactant flooding, polymer flooding, nanofluid flooding and chemical combinational flooding systems.In addition, the involved oil-displacement mechanism is briefly summed up.Finally, the development trend of chemical oil-displacement technology is prospected.
Key words:  chemical oil-displacement    enhanced oil recovery    nanofluid    polymer
收稿日期:  2021-06-16      修回日期:  2022-04-05           出版日期:  2022-06-20
ZTFLH:  TE39  
基金资助: 国家自然科学基金项目(22002117);陕西省自然科学基础研究计划项目(2021JQ-585);西安石油大学研究生创新与实践能力培养项目(YCS19213130)
通讯作者:  杜春保(1988-),男,博士,讲师,研究方向为纳米材料的控制合成与应用,通讯联系人,duchunbao218@126.com。    E-mail:  duchunbao218@126.com
引用本文:    
杜春保, 蔡雨秀, 燕永利, 高明慧. 新型化学驱油技术研究进展[J]. 现代化工, 2022, 42(6): 35-39.
DU Chun-bao, CAI Yu-xiu, YAN Yong-li, GAO Ming-hui. Research progress on novel chemical oil displacement technology. Modern Chemical Industry, 2022, 42(6): 35-39.
链接本文:  
https://www.xdhg.com.cn/CN/10.16606/j.cnki.issn0253-4320.2022.06.008  或          https://www.xdhg.com.cn/CN/Y2022/V42/I6/35
[1] 张臻烨, 胡山鹰, 金涌.2060中国碳中和——化石能源转向化石资源时代[J].现代化工, 2021, 41(6):1-5.
[2] 叶馨.基于小波回归分析的国际原油价格分析及预测[D].天津:天津大学, 2012.
[3] 胡淑琼, 李雪, 卢祥国, 等.三元复合驱对储层伤害及其作用机理研究[J].油田化学, 2013, 30(4):575-580.
[4] 苟绍华, 夏鸿, 周利华, 等.水溶性AA/AM/AHPSE/DNDA四元共聚物驱油剂的合成及性能研究[J].化工新型材料, 2015, 43(10):150-153.
[5] 张玉松, 刘琦, 彭勃, 等.智能纳米化学驱油剂研究现状[J].现代化工, 2020, 40(6):19-23.
[6] Li Y, Zhang W, Kong B, et al.Mixtures of anionic/cationic surfactants:A new approach for enhanced oil recovery in low-salinity, high-temperature sandstone reservoir[J].SPE Journal, 2016, 21(4):1164-1177.
[7] Li Y, Puerto M, Bao X, et al.Synergism and performance for systems containing binary mixtures of anionic/cationic surfactants for enhanced oil recovery[J].Journal of Surfactants & Detergents, 2017, 20(1):21-34.
[8] Li Y C, Li Q, Zhang W D, et al.In-Situ microemulsion-assisted fluid recovery with blend of anionic-cationic surfactants in super high temperatureextra low permeability formations[C].SPE-190400-MS, 2018.
[9] Pu W F, Du D J, Tang Y L, et al.Synthesis of an alkyl polyoxyethylene ether sulfonate surfactant and its application in surfactant flooding[J].Journal of Surfactants and Detergents, 2018, 21:687-697.
[10] Abbas K M, Mansooreh R, Siamak M, et al.Wettability alteration and interfacial tension (IFT) reduction in enhanced oil recovery (EOR) process by ionic liquid flooding[J].Journal of Molecular Liquids, 2017, 248:153-162.
[11] Saxena N, Pal N, Dey S, et al.Characterizations of surfactant synthesized from palm oil and its application in enhanced oil recovery[J].Journal of the Taiwan Institute of Chemical Engineers, 2017, 81:343-355.
[12] Seo S, Mastiani M, Mosavati B, et al.Performance evaluation of environmentally benign nonionic biosurfactant for enhanced oil recovery[J].Fuel, 2018, 234:48-55.
[13] Li Y, Kong B, Zhang W, et al.Asp flood with novel mixtures of anionic-cationic surfactants for high water cut mature sandstone reservoir:From laboratory to field application[C].SPE-195056-MS, 2019.
[14] Kiani S, Rogers S E, Sagisaka M, et al.A new class of low surface energy anionic surfactant for enhanced oil recovery (EOR)[J].Energy & Fuels, 2019, 33:3162-3175.
[15] Nowrouzi I, Mohammadi A H, Manshad A K.Water-oil interfacial tension (IFT) reduction and wettability alteration in surfactant flooding process using extracted saponin from Anabasis Setifera plant[J].Journal of Petroleum Science and Engineering, 2020, 189:106901.
[16] Hua Z, Lin M Q, Dong Z X, et al.Study of deep profile control and oil displacement technologies with nanoscale polymer microspheres[J].Journal of Colloid and Interface Science, 2014, 424:67-74.
[17] Sun C Z, Jiang H Q, Liu B X, et al.Interfacial activity and oil displacement efficiency of an alkyl glucoside and petroleum sulfonate system[J].Energy Sources, Part A:Recovery Utilization and Environmental Effects, 2015, 37(15):1674-1679.
[18] Liu P C, Mu Z B, Wang C, et al.Experimental study of rheological properties and oil displacement efficiency in oilfields for a synthetic hydrophobically modified polymer[J].Scientific Reports, 2017, 7(1):8791.
[19] Zhong H Y, Li Y Y, Zhang W D, et al.Microflow mechanism of oil displacement by viscoelastic hydrophobically associating water-soluble polymers in enhanced oil recovery[J].Polymers, 2018, 10(6):628.
[20] Zhou M, Yi R J, Gu Y H, et al.Synthesis and evaluation of a Tetra-copolymer for oil displacement[J].Journal of Petroleum Science and Engineering, 2019, 179:669-674.
[21] Nie X R, Chen J B, Cao Y, et al.Investigation on plugging and profile control of polymer microspheres as a displacement fluid in enhanced oil recovery[J].Polymers, 2019, 11(12):1993.
[22] Mcelfresh P M, Holcomb D L, Ector D.Application of nanofluid technology to improve recovery in oil and gas wells[C].SPE-154827-MS, 2012.
[23] Hendraningrat L, Torsæ Ter O.Effects of the initial rock wettability on silica-based nanofluid-enhanced oil recovery processes at reservoir temperatures[J].Energy & Fuels, 2014, 28(10):6228-6241.
[24] Kazemzadeh Y, Sourani S, Doryani H, et al.Recovery of asphaltenic oil during nano fluid injection[J].Petroleum Science & Technology, 2015, 33(2):139-146.
[25] Ershadi M, Alaei M, Rashidi A, et al.Carbonate and sandstone reservoirs wettability improvement without using surfactants for chemical enhanced oil recovery (C-EOR)[J].Fuel, 2015, 153:408-415.
[26] Hosseini M S, Sadeghi M T, Khazaei M.Wettability alteration from superhydrophobic to super hydrophilic via synthesized stable nano-coating[J].Surface and Coatings Technology, 2017, 326:79-86.
[27] Dai C, Wang X, Li Y, et al.Spontaneous imbibition investigation of self-dispersing silica nanofluids for enhanced oil recovery in low-permeability cores[J].Energy & Fuels, 2017, 31(3):2663-2668.
[28] 陶晓贺.纳米二氧化硅分散液的制备及其驱油性能研究[D].开封:河南大学, 2019.
[29] Zargartalebi M, Kharrat R, Barati N.Enhancement of surfactant flooding performance by the use of silica nanoparticles[J].Fuel, 2015, 143:21-27.
[30] Maurya, Neetish, Kumar, et al.Studies on behavior of suspension of silica nanoparticle in aqueous polyacrylamide solution for application in enhanced oil recovery[J].Petroleum Science & Technology, 2016, 34(5):429-436.
[31] Shi C X, Song S M, Guo F J, et al.Preparation and evaluation of erucamidopropyl dimethyl amine oxide used as alkali-free oil displacement agent[J].Journal of Petroleum Exploration and Production Technology, 2017, 7(4):1159-1164.
[32] Pu W F, Gu J Y, Zhao T H, et al.Laboratory study on the oil displacement properties of sugar amine sulfonate surfactant[J].Journal of Surfactants and Detergents, 2017, 20:1037-1049.
[33] Li K X, Jing X Q, Qu D, et al.Pore-level investigations on the oil displacement mechanisms of a viscoelastic surfactant in porous media[J].Journal of Petroleum Science and Engineering, 2019, 173:748-757.
[34] Wang Z Y, Lin M Q, Jin S P, et al.Combined flooding systems with polymer microspheres and nonionic surfactant for enhanced water sweep and oil displacement efficiency in heterogeneous reservoirs[J].Journal of Dispersion Science and Technology, 2019, 41(2):1-10.
[1] 徐建强, 傅佳骏. 本征型自修复高分子材料研究进展[J]. 现代化工, 2022, 42(6): 64-68.
[2] 尚玲, 甄学乐, 全红平, 田海洋, 邓顺杰. 一种自增稠酸化转向聚合物的研究[J]. 现代化工, 2022, 42(5): 162-166,171.
[3] 尹富强, 赵玉辰, 李赵春. 碳系填料改性导电聚合物复合材料的研究进展[J]. 现代化工, 2022, 42(4): 39-42,47.
[4] 田爱芬, 孙悦, 王茜茜, 李佳华, 张新荣, 王洪彦. IPMC柔性驱动材料研究进展[J]. 现代化工, 2022, 42(4): 48-52.
[5] 景联鹏, 顾丽莉, 唐徐禹, 黄智华, 李江舟, 李增良, 彭健. 分子印迹模板分子类型研究进展[J]. 现代化工, 2022, 42(3): 59-63.
[6] 谭俊玉, 艾照全. 7 nm高分辨率极紫外光刻胶研究新进展[J]. 现代化工, 2022, 42(3): 79-84.
[7] 蔡丽军, 沈凯莉, 许军, 任满年, 曹发海. 球形聚合物刷对卟啉镍的脱除规律研究[J]. 现代化工, 2022, 42(3): 128-132.
[8] 吴奕璇, 尹大学, 王宝燕, 崔香. 基于超支化聚合物水凝胶的研究进展[J]. 现代化工, 2022, 42(1): 35-39,45.
[9] 张园, 陈金梅, 李亮, 伍亚军, 王翔, 岳鹏, 张世岭, 郭继香. 耐温抗盐聚合物凝胶体系研究进展[J]. 现代化工, 2022, 42(1): 51-55,60.
[10] 王志航, 许金余, 白二雷, 任彪, 宁镱彭. 聚合物水泥基复合填缝料耐低温性能研究[J]. 现代化工, 2021, 41(S1): 173-178.
[11] 张振. 苯乙烯装置聚合物生成原因分析及对策[J]. 现代化工, 2021, 41(S1): 342-346.
[12] 刘容麟, 王红涛. 氨氮对颗粒污泥生物除磷的影响及相关机制探究[J]. 现代化工, 2021, 41(7): 144-148.
[13] 江悦, 尚宏周, 王皓卿, 袁飞, 韩利华, 孙晓然. 铅离子印迹聚合物的制备及吸附性能研究[J]. 现代化工, 2021, 41(5): 143-147,152.
[14] 张家晶, 郑永杰, 金春雪, 杨万丽, 崔婷婷, 王雪, 王永鹤. g-C3N4基光催化剂改性的研究进展[J]. 现代化工, 2021, 41(3): 42-47.
[15] 王晨希, 吴文瞳, 郑蕾, 杨飞华, 苍大强, 张玲玲. 地质聚合物应用于环境治理领域的研究进展[J]. 现代化工, 2021, 41(3): 63-67.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备09035943号-37
版权所有 © 《现代化工》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn