Please wait a minute...
 
最新公告: 重要提醒:骗子冒充编辑部要求加作者微信,谨防上当!   关于暑假、寒假期间版面费发票及期刊样刊延迟邮寄的通知    
现代化工  2022, Vol. 42 Issue (5): 188-191,196    DOI: 10.16606/j.cnki.issn0253-4320.2022.05.036
  科研与开发 本期目录 | 过刊浏览 | 高级检索 |
碳纳米管负载NiCo催化剂的制备及析氧性能研究
闫蕊, 刘志琪, 任浩, 吕凤圆, 吴明雄, 张建鹏, 李亚雯, 王凯
太原工业学院材料工程系, 山西 太原 030008
Preparation of carbon nanotube supported NiCo catalyst and study on its performance in oxygen evolution
YAN Rui, LIU Zhi-qi, REN Hao, LV Feng-yuan, WU Ming-xiong, ZHANG Jian-peng, LI Ya-wen, WANG Kai
Department of Materials Engineering, Taiyuan Institute of Technology, Taiyuan 030008, China
下载:  PDF (3153KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 以碳纳米管(CNTs)为载体,通过调控水热反应时间及温度负载NiCo颗粒,制备NiCo/CNTs复合催化剂。利用碳纳米管独特的中空管状结构、高比表面积以及良好的导电特性来负载高活性的NiCo颗粒,开发高性能析氧催化剂。利用激光拉曼、扫描电子显微镜、X射线衍射和电化学测试研究了水热反应温度与时间对NiCo/CNTs复合催化剂形貌、晶型结构及电化学性能的影响。结果表明,在130℃、24 h与150℃、8 h条件下制备的NiCo/CNTs复合催化剂的综合性能较为优异。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
闫蕊
刘志琪
任浩
吕凤圆
吴明雄
张建鹏
李亚雯
王凯
关键词:  碳纳米管  NiCo催化剂  氧析出反应  分散性    
Abstract: Carbon nanotubes, with unique hollow tubular structure, high specific surface area and good electrical conductivity, are used to load NiCo particles with high activity to develop high performance oxygen evolution catalysts.NiCo/CNTs composite catalyst is prepared by loading NiCo particles on carbon nanotubes (CNTs) through regulating the time and temperature of hydrothermal reaction.Raman laser, scanning electron microscope (SEM), X-ray diffraction (XRD) and electrochemical test are employed to study the influences of reaction temperature and time on the morphology, crystal structure and electrochemical performance of NiCo/CNTs composite catalyst.It is shown that NiCo/CNTs composite catalysts prepared at 130℃ for 24 h and 150℃ for 8 h have better overall performance.
Key words:  carbon nanotube    NiCo catalyst    oxygen evolution reaction    dispersity
收稿日期:  2021-12-15      修回日期:  2022-03-16           出版日期:  2022-05-20
ZTFLH:  TQ31  
基金资助: 山西省高等学校科技创新项目(2020L0652);山西省高等学校大学生创新创业项目(S202114101045);山西省基础研究计划资助项目(20210302124226)
通讯作者:  王凯(1986-),男,博士后,副高级工程师,研究方向为新型炭材料的电化学性能研究,通讯联系人,wangkaityuan@126.com。    E-mail:  wangkaityuan@126.com
作者简介:  闫蕊(1985-),女,博士,副教授,研究方向为石墨烯基聚合物以及氧还原、氧析出电催化剂的研究,ruiyan1127@163.com
引用本文:    
闫蕊, 刘志琪, 任浩, 吕凤圆, 吴明雄, 张建鹏, 李亚雯, 王凯. 碳纳米管负载NiCo催化剂的制备及析氧性能研究[J]. 现代化工, 2022, 42(5): 188-191,196.
YAN Rui, LIU Zhi-qi, REN Hao, LV Feng-yuan, WU Ming-xiong, ZHANG Jian-peng, LI Ya-wen, WANG Kai. Preparation of carbon nanotube supported NiCo catalyst and study on its performance in oxygen evolution. Modern Chemical Industry, 2022, 42(5): 188-191,196.
链接本文:  
https://www.xdhg.com.cn/CN/10.16606/j.cnki.issn0253-4320.2022.05.036  或          https://www.xdhg.com.cn/CN/Y2022/V42/I5/188
[1] Baker R T K, Laubernds K, Wootsch A, et al.Pt/Graphite nanofiber catalyst in n-hexane test reaction[J].J Catal, 2000, 1:165-167.
[2] Liang H, Meng F, Caban-Acevedo M, et al.Hydrothermal continuous flow synthesisand exfoliation of NiCo layered double hydroxide nanosheets for enhanced oxygen evolution catalysis[J].Nano Lett, 2015, 15:1421-1427.
[3] Dresp S, Dionigi F, Klingenhof M, et al.Direct electrolytic splitting of seawater:Opportunities and challenges[J].ACS Energy Lett, 2019, 4:933-942.
[4] Urban J J.Emerging scientific and engineering opportunities within the water-energy nexus[J].Joule, 2017, 1:665-688.
[5] 何洪波.二氧化钛基纳米复合材料修饰阳极及其光催化辅助电解水制氢性能研究[D].上海:华东理工大学, 2013.
[6] Sohrabnejad E I, Goryachev A, Exner K S, et al.Temperature-dependent kinetic studies of the chlorine evolution reaction over RuO2(110) model electrodes[J].ACS Catal, 2017, 7:2403-2411.
[7] Song J J, Wei C, Huang Z F, et al.A review on fundamentals for designing oxygen evolution electrocatalysts[J].Chem Soc Rev, 2020, 49:2196-2214.
[8] Li X M, Hao X G, Abudulaa A, et al.Nanostructured catalysts for electrochemical water splitting:Current state and prospects[J].J Mater Chem A, 2016, 4:11973-12000.
[9] Zhang J T, Yu L, Chen Y, et al.Designed formation of double-shelled Ni-Fe layered-double hydroxide nanocages for efficient oxygen evolution reaction[J].Adv Mater, 2020, 32:1906432-1906437.
[10] Xu Y, Tu W, Zhang B, et al.Nickel nanoparticles encapsulated in few-layer nitrogen-doped graphene drived from metel-organic frameworks as efficient bifunctional eletrocatalysis for overall water splitting[J].Adv Mater, 2017, 29:1605.
[11] Sun Y, Gao S, Lei F, et al, Atomically-thin non-layered cobalt oxide porous sheets for highly efficient oxygen-evolving electrocatalysis[J].Chem Sci, 2014, 5:3976-3982.
[12] Liang H, Meng F, Acevedo M C, et al.Hydroxidethermal coutinuous flow synthesis and exforliation of nico layered double hydroxide nanosheets for enhanced oxygen evolution catalysis[J].Nano Lett, 2015, 15:1421-1427.
[13] Zhao Z, Wu H, Jin Y, et al.A high-performance binary Ni-Co hydroxide-based water oxidation electrode with three-dimensional coaxial nanotube array structure[J].Adv Funct Mater, 2014, 24:4698-4705.
[14] Jiande C, Feng Z, Shao J, et al.Interfacial interaction between FeOOH and NiFe LDH to modulate the local electronic structure for enhanced OER electrocatalysis[J].ACS Catal, 2018, 8:11342-11351.
[15] Sören D, Fabio D, Malte K, et al.Molecular understanding of the impact of saline contaminants and alkaline pH on NiFe layered double hydroxide oxygen evolution catalysts[J].ACS Catal, 2021, 11:6800-6809.
[16] Anil A K, Chia-Hui Y, Kum-Yi C, et al.Binder-free heterostructured NiFe2O4/NiFe LDH nanosheet composite electrocatalysts for oxygen evolution reactions[J].ACS Appl Energy Mater, 2020, 3:10831-10840.
[17] Yuan F, Zhang E, Liu Z, et al.Hollow CoSx nanoparticles grown on FeCo-LDH microtubes for enhanced electrocatalytic performances for the oxygen evolution reaction[J].ACS Appl Energy Mater, 2021, 4:12211-12223.
[18] Zhou Q, Chen Y, Zhao G, et al.Active-site-enriched iron-doped nickel/cobalt hydroxide nanosheets for enhanced oxygen evolution reaction[J].ACS Catal, 2018, 8:5382-5390.
[19] Yu L, Wu L, McElhenny B, et al.Ultrafast room-temperature synthesis of porous s-doped Ni/Fe (oxy)hydroxide electrodes for oxygen evolution catalysis in seawater splitting[J].Energy Environ Sci, 2020, 13:3439-3446.
[1] 袁梦明, 唐焯林, 李冰晶, 李涛, 朱华丽, 陈召勇. 聚吡咯基碳纳米管的制备及在锂二氧化碳电池中的应用研究[J]. 现代化工, 2022, 42(5): 92-96.
[2] 叶发萍, 解玉龙, 郭倩妮, 赵素琴. 多壁碳纳米管/钴镍层状双金属氢氧化物纳米复合材料的制备及电化学性能研究[J]. 现代化工, 2022, 42(4): 187-191.
[3] 秦洪伟, 刘妍, 赵薇, 尤国红. 卡马西平的电化学检测研究[J]. 现代化工, 2022, 42(3): 238-241.
[4] 张明星, 马小辉, 樊钦宇. 碳纳米管超细粉碎分级的特性研究[J]. 现代化工, 2022, 42(2): 236-240.
[5] 车羿臻, 霍浩男, 李子睿, 王芳辉. 非共价改性碳纳米管在ORR中的应用进展[J]. 现代化工, 2021, 41(S1): 21-29,35.
[6] 王凯, 陈春翔, 刘志琪, 闫蕊. 碳纳米管负载NiFe催化剂的制备及析氧性能研究[J]. 现代化工, 2021, 41(9): 135-138,144.
[7] 李柳, 黄李金鸿, 黄万抚, 包亚晴. 碳纳米管的改性及在水处理领域中的应用与回收[J]. 现代化工, 2021, 41(7): 95-98,102.
[8] 余杨, 王黎, 鲁逸飞, 胡雨莎, 廖梦根. 碳纳米管/氧化石墨烯复合电极制备及除镉研究[J]. 现代化工, 2021, 41(6): 134-139.
[9] 江悦, 尚宏周, 王皓卿, 袁飞, 韩利华, 孙晓然. 铅离子印迹聚合物的制备及吸附性能研究[J]. 现代化工, 2021, 41(5): 143-147,152.
[10] 陈可祥, 林柯静, 郑体彦, 王鹏, 高峰, 杨桂花. 硅藻土铜铋基催化剂炔醛化反应合成1,4-丁炔二醇的研究[J]. 现代化工, 2021, 41(3): 130-133,139.
[11] 秦洪伟, 赵文鹏, 刘妍, 连爽, 尤国红. 纳米银石墨烯多壁碳纳米管复合修饰电极检测双酚A[J]. 现代化工, 2021, 41(2): 261-264.
[12] 解燕, 朱夕夕, 郑炜琼, 张传玲. 氮掺杂碳纳米管负载镍原子作为氧还原反应的高效电催化剂的研究[J]. 现代化工, 2021, 41(12): 88-92,98.
[13] 徐文凯, 王飞, 宁平, 孙鑫, 王驰, 宋辛, 牛璨, 李凯. Cu/ACNT催化剂在不同反应条件下脱除AsH3的研究[J]. 现代化工, 2021, 41(1): 128-132.
[14] 王浩宇, 李忠辉, 马新胜. 不同还原程度的功能化氧化石墨烯的制备与性能研究[J]. 现代化工, 2020, 40(9): 163-167.
[15] 丁伟, 黄李金鸿, 黄万抚, 张鑫. 改性有机纳滤膜研究进展[J]. 现代化工, 2020, 40(7): 21-24,29.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备09035943号-37
版权所有 © 《现代化工》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn