Please wait a minute...
 
最新公告: 重要提醒:骗子冒充编辑部要求加作者微信,谨防上当!   关于暑假、寒假期间版面费发票及期刊样刊延迟邮寄的通知    
现代化工  2022, Vol. 42 Issue (5): 77-81,86    DOI: 10.16606/j.cnki.issn0253-4320.2022.05.016
  技术进展 本期目录 | 过刊浏览 | 高级检索 |
利用金属水热产氢原位还原CO2的研究进展
曾旭, 周仰原, 姚国栋, 赵建夫
同济大学环境科学与工程学院, 污染控制与资源化研究国家重点实验室, 上海 200092
Research progress on in-situ reduction of CO2 by hydrogen produced from metal hydrothermal reaction
ZENG Xu, ZHOU Yang-yuan, YAO Guo-dong, ZHAO Jian-fu
State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
下载:  PDF (2088KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 介绍了金属水热反应产氢过程,总结了基于金属水热产氢原位还原CO2生成甲酸、甲醇和甲烷等化学品的最新研究进展,探讨了所涉及的反应路径和机理,最后指出了所面临的问题和未来发展方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
曾旭
周仰原
姚国栋
赵建夫
关键词:  水热反应  还原  CO2  加氢    
Abstract: Latest research progress in in-situ reduction of CO2 to formic acid, methanol and methane by hydrogen from metal hydrothermal reaction is introduced.The involved reaction paths and mechanisms are explored, and the problems and development direction are discussed, which provides relevant references for carbon emission reduction and the utilization of clean energy.
Key words:  hydrothermal reaction    reduction    CO2    hydrogenation
收稿日期:  2021-12-14      修回日期:  2022-03-20           出版日期:  2022-05-20
ZTFLH:  TQ032  
基金资助: 污染控制与资源化研究国家重点实验室自主课题(PCRRE20001)
通讯作者:  曾旭(1980-),男,博士,副研究员,研究方向为CO2资源化利用,通讯联系人,zengxu@tongji.edu.cn。    E-mail:  zengxu@tongji.edu.cn
引用本文:    
曾旭, 周仰原, 姚国栋, 赵建夫. 利用金属水热产氢原位还原CO2的研究进展[J]. 现代化工, 2022, 42(5): 77-81,86.
ZENG Xu, ZHOU Yang-yuan, YAO Guo-dong, ZHAO Jian-fu. Research progress on in-situ reduction of CO2 by hydrogen produced from metal hydrothermal reaction. Modern Chemical Industry, 2022, 42(5): 77-81,86.
链接本文:  
https://www.xdhg.com.cn/CN/10.16606/j.cnki.issn0253-4320.2022.05.016  或          https://www.xdhg.com.cn/CN/Y2022/V42/I5/77
[1] 宋静文, 景镇子, 金放鸣.金属锌水热法还原CO2产乙酸的研究[J].科技创新与应用, 2017, (6):17-18.
[2] 高磊, 赵明, 徐晨辰, 等.二氧化碳加氢制低碳烯烃催化剂的研究进展[J].现代化工, 2019, 39(5):47-51.
[3] 王学磊, 马国民.氢气储存方法及发展[J].科技经济导刊, 2018, 26(20):137.
[4] 华亚妮, 冯少广, 党欣悦, 等.CO2电催化还原产合成气研究进展[J].化工进展, 2021.DOI:10.16085/j.issn.1000-6613.2021-2009.
[5] 邵斌, 孙哲毅, 章云, 等.二氧化碳转化为合成气及高附加值产品的研究进展[J].化工进展, 2021.DOI:10.16085/j.issn.1000-6613.2021-1909.
[6] Sricharoenchaikul V.Assessment of black liquor gasification in supercritical water[J].Biores Technol, 2009, 100(2):638-643.
[7] Yang Y, Gilbert A, Xu C.Production of bio-crude from forestry waste by hydro-liquefaction in sub-/super-critical methanol[J].AlChE J, 2009, 55(3):807-819.
[8] Loutzenhiser P G, Meier A, Steinfeld A.Review of the two-step H2O/CO2-splitting solar thermochemical cycle based on Zn/ZnO redox reactions[J].Materials, 2010, 3(11):4922-4938.
[9] Steinfeld A.Solar thermochemical production of hydrogen:A review[J].Solar Energy, 2005, 78(5):603-615.
[10] Palumbo R, Lede O, Ricart E, et al.The production of Zn from ZnO in a high-temperature solar decomposition quench process-Ⅰ.The scientific framework for the process[J].Chem Eng Sci, 1998, 53(14):2503-2517.
[11] Yavor Y, Goroshin S, Bergthorson J, et al.Comparative reactivity of industrial metal powders with water for hydrogen production[J].Int J Hydro Energy, 2015, 40:1026-1036.
[12] Alexander S, Nataliya T, Alexander S.Kinetics of Al+H2O reaction:Theoretical study[J].J Phys Chem A, 2011, 115:4476-4481.
[13] Sonia Á, Jesús R.How H2 can be formed by the interaction of Al atoms with a few water molecules:A theoretical study[J].Chem Phy, 2010, 374:131-137.
[14] Koen M, Jeroen S, Vera M.Production of hydrogen gas from water by the oxidation of metallic iron under mild hydrothermal conditions, assisted by in situ formed carbonate ions[J].Fuel, 2015160:205-216.
[15] Bhaduri B, Verma N.A zinc nanoparticles-dispersed multi-scale web of carbonmicro-nanofibers for hydrogen production step of ZnO/Znwater splitting thermochemical cycle[J].Chem Eng Res Design, 2014, 92:1079-1090.
[16] Jin F, Gao Y, Jin Y, et al.High-yield reduction of carbon dioxide into formic acid by zero-valent metal/metal oxide redox cycles[J].Energy Environ Sci, 2011, 4(3):881-884.
[17] Jin F, Zeng X, Liu J, et al.Highly efficient and autocatalytic H2O dissociation for CO2 reduction into formic acid with zinc[J].Scientific Reports, 2014, 4(3):4503-4507.
[18] Takahashi H, Liu L, Yashiro Y, et al.CO2 reduction using hydrothermal method for the selective formation of organic compounds[J].J Mater Sci, 2006, 41(5):1585-1589.
[19] He C, Tian G, Liu Z, et al.A mild hydrothermal route to fix carbon dioxide to simple carboxylic acids[J].Organic Letters, 2010, 12(4):649-651.
[20] Yao G, Zeng X, Jin Y, et al.Hydrogen production by water splitting with Al and in-situ reduction of CO2 into formic acid[J].Int J Hydro Energy, 2015, 40:14284-14289.
[21] Zhong H, Gao Y, Yao G, et al.Highly efficient water splitting and carbon dioxide reduction into formic acid with iron and copper powder[J].Chem Eng J, 2015, 280:215-221.
[22] Lyu L, Zeng X, Yun J, et al.No catalyst addition and highly efficient dissociation of H2O for the reduction of CO2 to formic acid with Mn[J].Environ Sci Technol, 2014, 48(10):6003-6009.
[23] 颜蓓蓓, 王建, 刘彬, 等.生物油金属水热原位加氢提质技术研究进展[J].化工学报, 2021, 72(4):1783-1795.
[24] Zeng X, Hatakeyama M, Ogata K, et al.New insights into highly efficient reduction of CO2 to formic acid by using zinc under mild hydrothermal conditions:A joint experimental and theoretical study[J].Phy Chem Chem Phy, 2014, 16(37):19836-19840.
[25] Zeng X, Jin F, Yao G, et al.Theoretical study on highly efficient reduction of CO2 by in-situ produced hydrogen using Al under mild hydrothermal conditions[J].Int J Hydro Energy, 2016, 41:9140-9144.
[26] Ogata K, Hatakeyama M, Jin F, et al.A model study of hydrothermal reactions of trigonal dipyramidal Zn-5 cluster with two water molecules[J].Computa Theo Chem, 2015, 1070:126-131.
[27] 张英男, 李吉来, 黄旭日.MH+(M=Fe, Co, Ni)催化二氧化碳的氢化反应[J].高等学校化学学报, 2016, 37(3):534-538.
[28] Huo Z B, Hu M B, Zeng X, et al.Catalytic reduction of carbon dioxide into methanol over copper under hydrothermal conditions[J].Catalysis Today, 2012, 194(1):25-29.
[29] Hu J, Li Y, Zhen Y, et al.In situ FT-IR and ex situ XPS/HS-LEIS study of supported Cu/Al2O3 and Cu/ZnO catalysts for CO2 hydrogenation[J].Chinese J Catalysis, 2021, 42:367-375.
[30] Zhong H, Yao G D, Cui X, et al.Selective conversion of carbon dioxide into methane with a 98% yield on an in situ formed Ni nanoparticle catalyst in water[J].Chem Eng J, 2019, 357:421-427.
[1] 王季康, 李华, 彭宇飞, 李晓燕, 张新宇. 碳中和目标下可再生能源的3种应用模式[J]. 现代化工, 2022, 42(5): 1-6.
[2] 刘领, 柳欣, 李昭珺, 望红玉. NiCo2S4电极材料的研究进展[J]. 现代化工, 2022, 42(5): 55-58.
[3] 程宇玲, 刘有智, 李亚, 王斌, 焦纬洲, 高璟, 张栋铭. 碳纸负载铅电极的制备及其催化顺丁烯二酸电还原合成丁二酸[J]. 现代化工, 2022, 42(5): 87-91,96.
[4] 唐兆吉, 杜艳泽, 姜艳, 陈阳. 镍源对含硫前体加氢裂化催化剂反应性能的影响[J]. 现代化工, 2022, 42(5): 97-101,108.
[5] 许荣杰, 吴潘, 何坚, 刘长军, 蒋炜. Z型异质结C3N4/WO3光催化还原处理含Cr (Ⅵ)废水的研究[J]. 现代化工, 2022, 42(5): 114-120.
[6] 张伟. 沸腾床渣油加氢柴油馏分加氢生产国Ⅵ标准柴油工艺研究[J]. 现代化工, 2022, 42(5): 229-232.
[7] 刘嘉琪, 徐振, 齐骥, 梁长海. 碱性介质中铂-银合金电催化1,4-丁二醇氧化的研究[J]. 现代化工, 2022, 42(4): 93-98.
[8] 李岩, 遇治权, 孙鹏伟, 王伟. 碱金属改性负载Ni3P催化糠醛加氢重排反应性能的研究[J]. 现代化工, 2022, 42(4): 177-181.
[9] 李浩智, 李春虎, 魏宝震, 李子真, 刘昌豹, 李栋. 光催化联合海水NaHSO3还原脱除船舶烟气中NO的研究[J]. 现代化工, 2022, 42(4): 192-196,201.
[10] 冯曼曼, 方远鑫, 程慧远, 潘东伟, 吴雪梅, 贺高红. 孤立的Ni/Co双金属位点协同催化CO2电还原[J]. 现代化工, 2022, 42(3): 92-97.
[11] 唐兆吉, 杜艳泽, 王继锋, 陈阳. 不同热处理条件对加氢裂化催化剂性能的影响[J]. 现代化工, 2022, 42(3): 138-143.
[12] 龚浩, 王宇宏, 郭雨菲, 张静, 师倩莹, 高利珍. 铋/纳米洋葱碳电极的制备及其电化学还原CO2性能研究[J]. 现代化工, 2022, 42(3): 144-148.
[13] 张萌, 刘雨蓉, 王兴宝, 冯杰, 李文英. 一维TiO2-Al2O3载体的制备及其在加氢脱氮中的应用[J]. 现代化工, 2022, 42(3): 193-198.
[14] 宋雨蔷, 邢献军, 卜玉蒸, 罗甜. 氮磷共掺杂生物质多孔碳材料的制备及其氧还原性能研究[J]. 现代化工, 2022, 42(3): 199-204.
[15] 谢敏, 晁自胜, 王鸣玉, 韩胜华, 胥琦, 李松阳. Co/Co-N-C高效氧还原催化剂的制备及其用于镁-空气燃料电池的研究[J]. 现代化工, 2022, 42(2): 193-198.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备09035943号-37
版权所有 © 《现代化工》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn