Please wait a minute...
 
最新公告: 重要提醒:骗子冒充编辑部要求加作者微信,谨防上当!   关于暑假、寒假期间版面费发票及期刊样刊延迟邮寄的通知    
现代化工  2022, Vol. 42 Issue (5): 1-6    DOI: 10.16606/j.cnki.issn0253-4320.2022.05.001
  专论与评述 本期目录 | 过刊浏览 | 高级检索 |
碳中和目标下可再生能源的3种应用模式
王季康1, 李华2, 彭宇飞1, 李晓燕1, 张新宇1
1. 内蒙古工业大学电力学院, 内蒙古 呼和浩特 010080;
2. 内蒙古工业大学能源与动力工程学院, 内蒙古 呼和浩特 010051
Three application modes of renewable energy under carbon neutralization target
WANG Ji-kang1, LI Hua2, PENG Yu-fei1, LI Xiao-yan1, ZHANG Xin-yu1
1. College of Electric Power, Inner Mongolia University of Technology, Hohhot 010080, China;
2. College of Energy and Power Engineering, Inner Mongolia University of Technology, Hohhot 010051, China
下载:  PDF (2484KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 介绍了当前CO2催化氢化技术,跟踪最新CO2转化研究进展,提出化工园区多能互补的CO2转化循环系统。采取铁配合物Fe-PNP催化氢化CO2代替传统贵金属催化剂,高效制备甲醇和甲酰胺,实现了氢、电、碳、热、水的多能互补。海岛环境下,通过海洋养殖贝类、藻类等生物固碳,构建兼顾发电、经济养殖、以种植海水稻供粮的耦合结构。利用可再生能源的余电进行黑碳提取和回收并将其施入土壤,改善土壤肥力,增加绿色植物种植面积,提出了通过植物的光合作用吸碳的构想。最后对可再生能源实现碳中和的途径和方案进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王季康
李华
彭宇飞
李晓燕
张新宇
关键词:  碳中和  多能互补  CO2  可再生能源制氢  电化学    
Abstract: Current CO2 catalytic hydrogenation technology is introduced, latest progress in CO2 conversion research is tracked, and a multi-energy complementary CO2 conversion circulation system for a chemical park is proposed.The circulation system adopts the iron complex Fe-PNP to catalyze the hydrogenation of CO2 instead of traditional noble metal catalyst, which produces efficiently methanol and formamide, realizing multi-energy complementation among hydrogen, electricity, carbon, heat and water.The coupling structure covering power generation, economic breeding and growing sea rice for food is established through sea-breeding shellfish, algae and other organisms to fix carbon dioxide in the island environment.Surplus electricity from renewable energy is utilized to extract and recover black carbon and apply it to the soil to improve soil fertility, and increase the planting area of green plants.The idea to absorb carbon dioxide through plant photosynthesis is proposed.The way and scheme to achieve carbon neutralization by renewable energy are prospected.
Key words:  carbon neutralization    multi energy complementation    carbon dioxide    hydrogen production by renewable energies    electrochemistry
收稿日期:  2021-07-22      修回日期:  2022-03-15           出版日期:  2022-05-20
ZTFLH:  TK01  
通讯作者:  李华(1983-),女,博士,副教授,硕士生导师,研究方向为新能源,通讯联系人,18586062939,lihua0806@qq.com。    E-mail:  lihua0806@qq.com
作者简介:  王季康(1994-),男,硕士研究生,研究方向为可再生能源发电、多能互补,1172549157@qq.com
引用本文:    
王季康, 李华, 彭宇飞, 李晓燕, 张新宇. 碳中和目标下可再生能源的3种应用模式[J]. 现代化工, 2022, 42(5): 1-6.
WANG Ji-kang, LI Hua, PENG Yu-fei, LI Xiao-yan, ZHANG Xin-yu. Three application modes of renewable energy under carbon neutralization target. Modern Chemical Industry, 2022, 42(5): 1-6.
链接本文:  
https://www.xdhg.com.cn/CN/10.16606/j.cnki.issn0253-4320.2022.05.001  或          https://www.xdhg.com.cn/CN/Y2022/V42/I5/1
[1] 国家能源局.全国电力工业统计数据[EB/OL].北京:国家能源局, 2021-01-20.http://www.nea.gov.cn/.
[2] 国家能源局.风光发电量占全部用电量约11%[EB/OL].北京:国家能源局, 2021-06-05.http://www.nea.gov.cn/.
[3] 王建行, 赵颖颖, 李佳慧, 等.二氧化碳的捕集、固定与利用的研究进展[J].无机盐工业, 2020, 52(4):12-17.
[4] 李泽龙.我组二氧化碳加氢制芳烃研究取得新进展[EB/OL].大连:中科院大连化学物理研究所2019-06-16, http://www.solar.dicp.ac.cn.
[5] 林龙.我所实现串联催化二氧化碳电化学还原制甲烷[EB/OL].大连:中科院大连化学物理研究所, 2020-09-11, http://www.dicp.ac.cn.
[6] 王志文.水下压缩空气储能系统设计与能效分析[D].大连:大连海事大学船舶机电装备研究所, 2017.
[7] Boyd W P, Claustre H, Levy M, et al.Multi-faceted particle pumps drive carbon sequestration in the ocean[J].Nature, 2019, 568:327-335.
[8] 唐剑武, 叶属峰, 陈雪初, 等.海岸带蓝碳的科学概念、研究方法以及在生态恢复中的应用[J].中国科学:地球科学, 2018, 48(6):661-665.
[9] Zhang J H, Fang J G, Wang W, et al.Growth and loss of mariculture kelp Sacchariana japonica in Sungo Bay, China[J].Journal of Applied Phycology, 2012, 24(5):1209-1216.
[10] 张继红, 刘纪化, 张永雨, 等.海水养殖践行海洋负排放的途径[J].中国科学院院刊, 2021, 36(3):252-257.
[11] 孙悦.袁隆平:2021年示范推广100万亩海水稻种植[J].科学种养, 2021, 16(3):63-64.
[12] 曹军骥, 占长林.黑碳在全球气候和环境系统中的作用及其在相关研究中的意义[J].地球科学与环境学报, 2011, 33(2):177-184.
[13] Jacobson M Z.Climate response of fossil fuel and biofuel soot, accounting for soots feedback to snow and sea ice albedo and emissivity[J].Journal of Geophysical Research-Atmospheres, 2004, 04(109):D21201.
[14] Kaal J, Martinez-Cortizas A, Buurman P, et al.8000yr of black carbon accumulation in a colluvial soil from NW Spain[J].Quaternary Research, 2008, 69(1):56-61.
[15] Liang B, Lehmann J, Solomon D, et al.Black carbon increases cation exchange capacity in soils[J].Soil Science Society of American Journal, 2006, 70:1719-1730.
[16] Rahmatmand B, Rahimpour M R, Keshavarz P.Introducing a novel process to enhance the syngas conversion to methanol over Cu/ZnO/Al2O3 catalyst[J].Fuel Processing Technology, 2019, 193(5):159-179.
[17] Tahir M, Tahir B.Dynamic photocatalytic reduction of CO2 to CO in a honeycomb monolith reactor loaded with Cu and N doped TiO2 nanocatalysts[J].Applied Surface Science, 2016, 377(3):244-252.
[18] Zhang X F, Liu Y, Dong S L, et al.One-step hydrothermal synthesis of a TiO2-Ti3C2Tx nanocomposite with small sized TiO2 nanoparticles[J].Ceramics International, 2017, 43(14):11065-11070.
[19] Li M M J, Zeng Z Y, Liao F L, et al.Enhanced CO2 hydrogenation to methanol over CuZn nanoalloy in Ga modified Cu/ZnO catalysts[J].Journal of Catalysis, 2016, 343:157-167.
[20] Wang Z J, Song H, Pang H, et al.Photo-assisted methanol synthesis via CO2 reduction under ambient pressure over plasmonic Cu/ZnO catalysts[J].Appl Catal B-Environ, 2019, 250(2):10-16.
[21] 周柒, 丁红蕾, 郭得通, 等.CO2催化氢化制清洁能源的研究进展及趋势[J].化工学报, 2020, 71(8):3428-3443.
[22] Kattel S, Yan B, Yang Y, et al.Optimizing binding energies of key intermediates for CO2 hydrogenation to methanol over oxide supported copper[J].Journal of the American Chemical Society, 2016, 138(38):12440-12450.
[23] Kangvansura P, Chew L M, Kongmark C, et al.Effects of potassium and manganese promoters on nitrogen-doped carbon nanotube-supported iron catalysts for CO2 hydrogenation[J].Engineering, 2017, 3(3):385-392.
[24] Din I U, Shaharun M S, Naeem A, et al.Carbon nanofiber-based copper/zirconia catalyst for hydrogenation of CO2 to methanol[J].Journal of CO2 Utilization, 2017, 21(4):145-155.
[25] Roldan L, Marco Y, Garcia-Bordeje E.Origin of the excellent performance of Ru on nitrogen-doped carbon nanofibers for CO2 hydrogenation to CH4[J].ChemSusChem, 2017, 10(6):1139-1144.
[26] Gesmanee S, Koo-Amornpattana W.Catalytic hydrogenation of CO2 for methanol production in fixed-bed reactor using Cu-Zn supported on gamma-Al2O3[J].Energy Procedia, 2017, 138(5):739-744.
[27] Behrens M, Studt F, Kasatkin I, et al.The active site of methanol synthesis over Cu/ZnO/Al2O3 industrial catalysts[J].Science, 2012, 336(6083):893-897.
[28] Rezayee N M, Huff C A, Sanford M S.Tandem amine and ruthenium-catalyzed hydrogenation of CO2 to methanol[J].Journal of the American Chemical Society, 2015, 137(3):1028-1031.
[29] Kothandaraman J, Goeppert A, Czaun M, et al.Conversion of CO2 from air into methanol using a polyamine and a homogeneous ruthenium catalyst[J].Journal of the American Chemical Society, 2016, 138(3):778-781.
[30] Liu X, de Vries J G, Werner T.Transfer hydrogenation of cyclic carbonates and polycarbonate to methanol and diols by iron pincer catalysts[J].Green Chemistry, 2019, 21(19):5248-5255.
[31] 沈新玉.铁配合物催化还原CO2制甲酞胺、甲醇的理论研究[D].济南:山东师范大学化学化工与材料科学学院, 2020.
[32] Forties M S, Raison R J, Skj emstad J O.Formation, transformation and transport of black carbon (charcoal) in terrestrial and aquatic ecosystems[J].Science of the TotalEnvironment, 2006, 3(70):190-206.
[33] Okimori Y, Ogawa M, Takahashi F.Potential of CO2 emission reductions by carbonizing biomass waste from industrial tree plantation in South Sumatra, Indonesia[J].Mitigation and Adaptation Strategies for Gtobal Change, 2003, 8(7):261-280.
[34] Rondon M, Ramixez J, Lehmann J, et al.Charcoal additions reduce net emissions of greenhouse gases to the atmosphere[R].In Proceedings and the 3rd USDA Symposium on Greenhouse Gases and Carbon Sequestration, Baltimore, USA, March 21-24, 2005, 208.
[35] Lehmann J, Jose P, Silva J, et al.Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin:Fertilizer, manure and charcoal amendments[J].Plant and Soil, 2003, 249:343-357.
[1] 刘领, 柳欣, 李昭珺, 望红玉. NiCo2S4电极材料的研究进展[J]. 现代化工, 2022, 42(5): 55-58.
[2] 曾旭, 周仰原, 姚国栋, 赵建夫. 利用金属水热产氢原位还原CO2的研究进展[J]. 现代化工, 2022, 42(5): 77-81,86.
[3] 范馨月, 于佳蕊, 崔田路, 徐欢, 韩漾, 曹中秋, 张轲, 王艳, 辛士刚. 晶粒细化对Cu-20Co-20Ni块体合金在H2SO4溶液中腐蚀电化学行为的影响[J]. 现代化工, 2022, 42(5): 138-143.
[4] 班福忱, 王健, 赵鑫宇. 改性沸石填充电化学反应器处理生活污水中氨氮的试验研究[J]. 现代化工, 2022, 42(5): 157-161.
[5] 张旭. “双碳”目标下炼化企业转型发展思考与对策分析[J]. 现代化工, 2022, 42(4): 1-6.
[6] 王赛娅, 陈颖颀, 金彦礼, 于戈文. “双碳”目标下多联产技术发展方向探究[J]. 现代化工, 2022, 42(4): 12-16.
[7] 叶发萍, 解玉龙, 郭倩妮, 赵素琴. 多壁碳纳米管/钴镍层状双金属氢氧化物纳米复合材料的制备及电化学性能研究[J]. 现代化工, 2022, 42(4): 187-191.
[8] 王文虎, 王储, 赵姗姗, 刘英, 刘涛, 纪奕辉, 郭绍辉, 阎光绪. 原位电生成活性氯氧化降解高氯含氮废水的研究[J]. 现代化工, 2022, 42(4): 206-211.
[9] 牛宏伟, 马园园, 付豪, 廉红蕾. 铜基催化剂电还原CO2制乙醇的研究[J]. 现代化工, 2022, 42(3): 55-58,63.
[10] 冯曼曼, 方远鑫, 程慧远, 潘东伟, 吴雪梅, 贺高红. 孤立的Ni/Co双金属位点协同催化CO2电还原[J]. 现代化工, 2022, 42(3): 92-97.
[11] 龚浩, 王宇宏, 郭雨菲, 张静, 师倩莹, 高利珍. 铋/纳米洋葱碳电极的制备及其电化学还原CO2性能研究[J]. 现代化工, 2022, 42(3): 144-148.
[12] 秦洪伟, 刘妍, 赵薇, 尤国红. 卡马西平的电化学检测研究[J]. 现代化工, 2022, 42(3): 238-241.
[13] 吴天. Fenton-电氧化工艺处理垃圾渗滤液纳滤浓缩液的中试研究[J]. 现代化工, 2022, 42(2): 25-30.
[14] 卫郝, 酒红芳, 徐倩文, 王聪丽, 陈星星. 含钴催化剂电化学析氢研究进展[J]. 现代化工, 2022, 42(1): 76-79,84.
[15] 张振, 李苇杭, 杨英楠, 周张红, 曹伟. 活性炭负载金属铂单原子催化材料的电解析氢性能研究[J]. 现代化工, 2022, 42(1): 95-99.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备09035943号-37
版权所有 © 《现代化工》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn