Please wait a minute...
 
最新公告: 重要提醒:骗子冒充编辑部要求加作者微信,谨防上当!   关于暑假、寒假期间版面费发票及期刊样刊延迟邮寄的通知    
现代化工  2022, Vol. 42 Issue (4): 134-139    DOI: 10.16606/j.cnki.issn0253-4320.2022.04.026
  科研与开发 本期目录 | 过刊浏览 | 高级检索 |
水热-热压耦合法制备陶瓷/碳复合材料及其性能研究
徐元强1, 何青1, 李超2, 吴雪平1
1. 合肥工业大学化学与化工学院, 安徽 合肥 230009;
2. 合肥科晶材料技术有限公司, 安徽 合肥 230088
Preparation of halloysite-based ceramic/carbon composites by hydrothermal-hot pressing coupling method and study on properties
XU Yuan-qiang1, HE Qing1, LI Chao2, WU Xue-ping1
1. School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China;
2. Hefei Kejing Materials Technology Co., Ltd., Hefei 230088, China
下载:  PDF (10798KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 以埃洛石为模板、壳聚糖为碳源,通过水热制备埃洛石/碳;调控两者的质量比,热压得到陶瓷/碳复合材料。采用阿基米德排水法、三点弯曲测试和扫描电镜等研究埃洛石表面碳质量分数对复合材料的致密度、力学和导电性能的影响。结果表明,碳在热压中进一步碳化,埃洛石转变为莫来石,复合材料中碳均匀分布;随着埃洛石表面碳质量分数的增加,复合材料内部微裂纹增多,弯曲强度逐渐降低,但少量碳的添加增加了陶瓷的断裂韧性;当m(埃洛石)∶m(壳聚糖)为8时,复合材料的断裂韧性最高,比不添加碳的陶瓷提高了12.93%;当m(埃洛石)∶m(壳聚糖)为2时,复合材料的电导率最高,达到23.15 S/m。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
徐元强
何青
李超
吴雪平
关键词:  埃洛石  水热  陶瓷/碳  力学性能  导电性能    
Abstract: Halloysite/carbon are prepared by hydrothermal method using halloysite as template and chitosan as carbon source.By adjusting the mass ratio of halloysite to chitosan,ceramic/carbon composites are prepared by hot pressing sintering.The effects of carbon content on the density,mechanical property and electrical conductivity of composites are probed by Archimedes drainage method,three-point bending test and SEM.The results show that further carbonization occurs for the deposited carbon on halloysite surface,and halloysite transfers to mullite during hot pressing.Carbon is uniformly distributed in ceramic.With the increase of carbon content on the surface of halloysite,the generation of internal microcracks in composites increases and the flexural strength of the composites decreases gradually.Adding a small amount of carbon can improve the fracture toughness of ceramic.When the mass ratio of halloysite to chitosan is 8,the fracture toughness of the composite reaches the highest,which is 12.93% higher than that of the ceramic without carbon.When the mass ratio of halloysite to chitosan is 2,the electrical conductivity of composite achieves the highest,being 23.15 S·m-1.
Key words:  halloysite    hydrothermal    ceramic/carbon    mechanical properties    electrical conductivity
收稿日期:  2021-04-13      修回日期:  2022-01-29           出版日期:  2022-04-20
ZTFLH:  TQ174.7  
基金资助: 国家自然科学基金(51872070)
通讯作者:  吴雪平(1978-),女,博士,教授,主要从事碳纤维及其复合材料和无机非金属矿物材料的研究,通讯联系人,xuepingw@ustc.edu.Cn。    E-mail:  xuepingw@ustc.edu.Cn
作者简介:  徐元强(1997-),男,硕士研究生,主要从事黏土基陶瓷/碳复合材料的研究,2289919936@qq.com
引用本文:    
徐元强, 何青, 李超, 吴雪平. 水热-热压耦合法制备陶瓷/碳复合材料及其性能研究[J]. 现代化工, 2022, 42(4): 134-139.
XU Yuan-qiang, HE Qing, LI Chao, WU Xue-ping. Preparation of halloysite-based ceramic/carbon composites by hydrothermal-hot pressing coupling method and study on properties. Modern Chemical Industry, 2022, 42(4): 134-139.
链接本文:  
https://www.xdhg.com.cn/CN/10.16606/j.cnki.issn0253-4320.2022.04.026  或          https://www.xdhg.com.cn/CN/Y2022/V42/I4/134
[1] Wu X P,Liu C,Qi H J,et al.Synthesis and adsorption properties of halloysite/carbon nanocomposites and halloysite-derived carbon nanotubes[J].Applied Clay Science,2016,119:284-293.
[2] Jing O Y,Zheng Z,Yi Z,et al.High morphological stability and structural transition of halloysite (Hunan,China) in heat treatment[J].Applied Clay Science,2014,101:16-22.
[3] Chen C Y,Lan G S,Tuan W H,et al.Preparation of mullite by the reaction sintering of kaolinite and alumina[J].Journal of the European Ceramic Society,2000,20:2519-2525.
[4] Karhu M,Lagerbom J,Solismaa S,et al.Mining tailings as raw materials for reaction-sintered aluminosilicate ceramics:Effect of mineralogical composition on microstructure and properties[J].Ceramics International,2019,45(4):4840-4848.
[5] Yu H,Chen Y J,Guo X D,et al.Study on mechanical properties of hot pressing sintered mullite-ZrO2 composites with finite element method[J].Ceramics International,2018,44(7):7509-7514.
[6] Ondrej H,Jaroslav S,Pavol S.New approach for distribution of carbon nanotubes in alumina matrix[J].Journal of the European Ceramic Society,2014,34(7):1845-1851.
[7] Tatami J,Katashima T,Komeya K,et al.Electrically conductive CNT-dispersed silicon nitride ceramics[J].Journal of the American Ceramic Society,2005,88(10):2889-2893.
[8] Tan Y,Luo H,Zhang H,et al.Graphene nanoplatelet reinforced boron carbide composites with high electrical and thermal conductivity[J].Journal of the European Ceramic Society,2016,36(11):2679-2687.
[9] Zhang W,Ma Q S,Zeng K H,et al.Mechanical properties and thermal stability of carbon fiber cloth reinforced sol-derived mullite composites[J].Journal of Advanced Ceramics,2019,8(2):218-227.
[10] Lin J,Yang Y H,Zhang H A,et al.Effects of CNTs content on the microstructure and mechanical properties of spark plasma sintered TiB2-SiC ceramics[J].Ceramics International,2016,43(1):1284-1289.
[11] 吴雪平,赵军帅,饶续,等.蒙脱石/炭对炭纤维/环氧树脂复合材料性能的影响[J].新型炭材料,2019,34(1):51-59.
[12] Wu X P,Zhao J S,Rao X,et al.Carbon fiber epoxy-matrix composites with hydrothermal-carbon-coated halloysite nanotube filler exhibiting enhanced strength and thermal conductivity[J].Polymer Composites,2020,41(7):2687-2703.
[13] 刘亚茹.加热对伊朗粘土碳热还原反应的影响[J].耐火与石灰,2003,28(5):51-53.
[14] 葛亚玲.壳聚糖接枝共聚絮凝剂的制备及其絮凝性能[D].重庆:重庆大学,2017.
[15] Wang Z,Qu Q,Wu Z J,et al.Effect of oxidation at 1100 degrees C on the strength of ZrB2-SiC-graphite ceramics[J].Journal of Alloys and Compounds,2011,509(24):6871-6875.
[16] Inage K,Akatsuka K,Iwasaki K,et al.Effect of crystallinity and microstructure on mechanical properties of CaO-Al2O3-SiO2 glass toughened by precipitation of hexagonal CaAl2Si2O8 crystals[J].Journal of Non-Crystalline Solids,2020,534:119948.
[17] Zhang Y,Wu Y J,Yang X K,et al.High-strength thermal insulating mullite nanofibrous porous ceramics[J].Journal of the European Ceramic Society,2020,40(5):2090-2096.
[18] Zhang X,Han X Y,Zhang Y D,et al.Effect of holding time and pressure on the densification,microstructure and mechanical properties of hot pressed Al2O3-CA6-ZrO2/Ni multi-phase composites[J].Journal of Alloys and Compounds,2020,850:156783.
[19] Erkalfa H,Misirh Z,Baykara T.Effect of additives on the densification and microstructural development of low-grade alumina powders[J].Journal of Materials Processing Technology,1996,62(1-3):108-115.
[20] Chen W,Miyamoto Y,Matsumoto T,et al.Preparation of AlN ceramic bonded carbon by gelcasting and spark plasma sintering[J].Carbon,2010,48(12):3399-3404.
[21] Pereira F S,Silva Agostini D L,Job A E,et al.Thermal studies of chitin-chitosan derivatives[J].Journal of Thermal Analysis & Calorimetry,2013,114(1):321-327.
[22] Kornilova A V,Gorbachevskii M V,Kuralbayeva G A,et al.Plasmonic properties of halloysite nanotubes with immobilized silver nanoparticles for applications in surface-enhanced Raman scattering[J].Physica Status Solidi A-Applications and Materilals Science,2019,216(14):1800886.
[23] 关芳兰,夏鹤,周一帆.石墨烯/泡孔氧化铝/环氧树脂复合材料导热性能[J].新型炭材料,2019,34(6):587-592.
[24] Farahbakhsh I,Ahmadi Z,Asl M S.Densification,microstructure and mechanical properties of hot pressed ZrB2-SiC ceramic doped with nano-sized carbon black[J].Ceramics International,2017,43(11):8411-8417.
[25] Yasar Z A,Haber R A.Effect of Carbon Addition and mixture method on the microstructure and mechanical properties of silicon carbide[J].Materials,2020,13(17):3768.
[26] Tian X H,Yan K C,Liu H,et al.Effect of Co on thermal and mechanical properties of Si3N4 based ceramic tool material[J].Ceramics International,2019,45(15):19435-19441.
[27] Yang H L,Li Y,Li Q G,et al.Preparation and properties of porous silicon nitride ceramics with polymethyl methacrylate as pore-forming agent[J].Ceramics International,2020,46(10):17122-17129.
[28] Gong H Y,Zhang Y G,Che H W.Influence of carbon black on properties of PZT-cement piezoelectric composites[J].Journal of Composite Materials,2010,44(23):2747-2757.
[1] 梁斌, 黄祖强, 张燕娟, 胡华宇. 甲壳素水热炭对四环素吸附性能的研究[J]. 现代化工, 2022, 42(4): 104-108.
[2] 杨君炜, 刘聪, 寿可为, 陈冬冬, 许忠斌. 基于微流控技术的水凝胶仿生纤维的制备及其性能调控[J]. 现代化工, 2022, 42(4): 123-127,133.
[3] 叶发萍, 解玉龙, 郭倩妮, 赵素琴. 多壁碳纳米管/钴镍层状双金属氢氧化物纳米复合材料的制备及电化学性能研究[J]. 现代化工, 2022, 42(4): 187-191.
[4] 廉爽, 卢淇月, 章寅, 谢文娟, 蒋东丽. 二硫化钼纳米花球负载阿霉素对癌细胞的光热-化疗协同治疗作用[J]. 现代化工, 2022, 42(1): 189-194.
[5] 谢艳玲, 祝琳华, 司甜. 改性不同形貌天然黏土负载纳米金催化剂的制备及催化性能研究[J]. 现代化工, 2021, 41(9): 107-111,117.
[6] 钱豪, 刘湉湉, 聂仲武, 陈曙光. NiTe/Ni@CC//AC/CC全固态柔性超级电容器的性能研究[J]. 现代化工, 2021, 41(7): 108-112,117.
[7] 那平, 李萌, 高凯花, 王榕静, 潘玉福. 微乳液-水热法制备纳米氢氧化钙及其对亚甲基蓝去除的研究[J]. 现代化工, 2021, 41(5): 88-92.
[8] 倪训伟. Fe3O4/PEDOT复合材料的制备和多种性能研究[J]. 现代化工, 2021, 41(5): 197-202.
[9] 岳大然, 张嘉怡. 生物形态特征对透明木材特性的影响研究[J]. 现代化工, 2021, 41(4): 52-57.
[10] 柯稳, 王会强, 田志平, 马强, 张天博, 刘军. 水热法制备花状NiCo2O4及其电化学性能研究[J]. 现代化工, 2021, 41(3): 116-119.
[11] 冯炘, 林祥飞, 朱哲, 解玉红. 市政污泥与菌糠共水热液化制生物油的研究[J]. 现代化工, 2021, 41(2): 92-95,101.
[12] 胡月, 李凤艳, 蔚红建, 赵天波. 氟硅共聚改性提高聚丙烯酸酯力学和疏水性能的研究[J]. 现代化工, 2021, 41(2): 120-123,129.
[13] 赵国庆, 袁钊, 王连, 郭卓. NiCoP/NSRGO复合材料的制备及其电催化性能研究[J]. 现代化工, 2021, 41(2): 155-160.
[14] 岳琳, 曹云梦, 张迎, 王涛, 罗晓, 廉静, 李再兴. 核壳结构Fe3O4@Sn-MOF的制备及其光催化性能研究[J]. 现代化工, 2021, 41(12): 125-129.
[15] 魏煜航, 朱向东, 张占恩. 亚临界水热反应中氯霉素的去除效果及降解机理[J]. 现代化工, 2021, 41(11): 128-131,137.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备09035943号-37
版权所有 © 《现代化工》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn