Please wait a minute...
 
最新公告: 重要提醒:骗子冒充编辑部要求加作者微信,谨防上当!   关于暑假、寒假期间版面费发票及期刊样刊延迟邮寄的通知    
现代化工  2022, Vol. 42 Issue (4): 23-27    DOI: 10.16606/j.cnki.issn0253-4320.2022.04.005
  技术进展 本期目录 | 过刊浏览 | 高级检索 |
耐碱的螺环型N-杂环季铵盐阴离子交换膜材料的研究进展
王薪1,2, 刘世斌1, 刘磊3, 李南文2
1. 太原理工大学化学工程与技术学院, 山西 太原 030024;
2. 中国科学院山西煤炭化学研究所, 山西 太原 030001;
3. 安徽师范大学化学与材料科学学院, 安徽 芜湖 241000
Advances in alkali-resistant spirocyclic N-heterocyclic quaternary ammonium based anion exchange membrane materials
WANG Xin1,2, LIU Shi-bin1, LIU Lei3, LI Nan-wen2
1. College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan 030024, China;
2. Institute of Coal Chemistry of Chinese Academy of Sciences, Taiyuan 030001, China;
3. College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China
下载:  PDF (1625KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 综述了近年来螺环型N-杂环类阴离子交换膜材料的研究进展,包括膜材料的制备方法及分类、降解机理和氢氧燃料电池性能,并对该领域的发展趋势进行了分析和展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王薪
刘世斌
刘磊
李南文
关键词:  阴离子交换膜  N-杂环脂族季铵盐  耐碱稳定性  降解机理  燃料电池性能    
Abstract: This article reviews the research advances in spirocyclic N-heterocyclic anion exchange membrane materials in recent years,including the preparation method and classification of membrane materials,degradation mechanism and hydrogen-oxygen fuel cell performance.The development trend of the materials is analyzed and prospected.
Key words:  anion exchange membrane    N-heterocyclic aliphatic quaternary ammonium    stability in alkali-resistance    degradation mechanism    fuel cell performance
收稿日期:  2021-04-07      修回日期:  2022-01-27           出版日期:  2022-04-20
ZTFLH:  O632.6  
基金资助: 国家自然科学基金项目(21835005);山西省科技重大专项项目(20181102019);山西省百人计划项目(2017SBRJH03)
通讯作者:  刘世斌(1963-),男,博士,教授,博士生导师,研究方向为清洁能源,通讯联系人,sbliu@tyut.edu.cn。    E-mail:  sbliu@tyut.edu.cn
作者简介:  王薪(1992-),男,博士生,研究方向为离子交换膜材料,243868023@qq.com
引用本文:    
王薪, 刘世斌, 刘磊, 李南文. 耐碱的螺环型N-杂环季铵盐阴离子交换膜材料的研究进展[J]. 现代化工, 2022, 42(4): 23-27.
WANG Xin, LIU Shi-bin, LIU Lei, LI Nan-wen. Advances in alkali-resistant spirocyclic N-heterocyclic quaternary ammonium based anion exchange membrane materials. Modern Chemical Industry, 2022, 42(4): 23-27.
链接本文:  
https://www.xdhg.com.cn/CN/10.16606/j.cnki.issn0253-4320.2022.04.005  或          https://www.xdhg.com.cn/CN/Y2022/V42/I4/23
[1] Varcoe J R,Atanssov P,Dekel D R,et al.Anion-exchange membranes in electrochemical energy systems[J].Energy & Environmental Science,2014,7(10):3135-3191.
[2] 薛博欣.耐碱型有机阳离子的分子结构设计及阴离子交换膜制备[D].合肥:中国科学技术大学,2020.
[3] 薛博欣,郑吉富,张所波.耐碱的胍盐阴离子交换膜研究进展[J].科学通报,2019,64(2):134-144.
[4] Lai A N,Zhou K,Zhou Y Z,et al.Anion exchange membranes based on carbazole-containing polyolefin for direct methanol fuel cells[J].Journal of Membrane Science,2016,497:99-107.
[5] Mohanty A D,Bae C.Mechanistic analysis of ammonium cation stability for alkaline exchange membrane fuel cells[J].Journal of Materials Chemistry A,2014,2:17314-17320.
[6] Arges C G,Ramani V.Two-dimensional NMR spectroscopy reveals cation-triggered backbone degradation in polysulfone-based anion exchange membranes[J].Proceedings of the National Academy of Sciences,2013,110(7):2490-2495.
[7] Marino M G,Kreuer K D.Alkaline stability of quaternary ammonium cations for alkaline fuel cell membranes and ionic liquids[J].ChemSusChem,2015,8:513-523.
[8] 刘磊,褚晓萌,李南文.碱性燃料电池用聚烯烃类阴离子交换膜的研究进展[J].科学通报,2019,64(2):123-133.
[9] Pham T H,Jannasch P.Aromatic polymers incorporating bis-N-spirocyclic quaternary ammonium moieties for anion-exchange membranes[J].ACS Macro Letters,2015,4:1370-1375.
[10] Gu F,Dong H,Li Y,et al.Exchange membranes:Experimental studies and theoretical calculations[J].Macromolecules,2014,47:208-216.
[11] Mohanty A D,Tignor S E,Krause J A,et al.Systematic alkaline stability study of polymer backbones for anion exchange membrane applications[J].Macromolecules,2016,49:3361-3372.
[12] Pham T H,Jannasch P.N-Spirocyclic quaternary ammonium ionenes for anion-exchange membranes[J].Journal of the American Chemical Society,2017,139:2888-2891.
[13] Zhang X,Chu X,Zhang M,et al.Molecularly designed,solvent processable tetraalkylammonium-functionalized fluoropolyolefin for durable anion exchange membrane fuel cells[J].Journal of Membrane Science,2019,574:212-221.
[14] Hibbs M R,Fujimoto C H,Cornelius C J.Synthesis and characterization of poly (phenylene)-based anion exchange membranes for alkaline fuel cells[J].Macromolecules,2009,42:8316-8321.
[15] Dang H S,Jannasch P.High-performing hydroxide exchange membranes with flexible tetra-piperidinium side chains linked by alkyl spacers[J].ACS Applied Energy Materials,2018,1:2222-2231.
[16] Chen N,Long C,Li Y,et al.Ultra-stable and high ion-conducting polyelectrolyte based on six-membered N-Spirocyclic ammonium for hydroxide exchange membrane fuel cell applications[J].ACS Applied Materials & Interfaces,2018,10:15720-15732.
[17] Chu X,Liu L,Huang Y,et al.Practical implementation of bis-six-membered N-cyclic quaternary ammonium cations in advanced anion exchange membranes for fuel cells:Synthesis and durability[J].Journal of Membrane Science,2019,578:239-250.
[18] Wang X,Sheng W,Shen Y H,et al.N-cyclic quaternary ammonium-functionalized anion exchange membrane with improved alkaline stability enabled by aryl-ether free polymer backbones for alkaline fuel cells[J].Journal of Membrane Science,2019,587:117135.
[19] Mohanty A D,Chang Y R,Yu S K,et al.Stable elastomeric anion exchange membranes based on quaternary ammonium-tethered polystyrene-b-poly(ethylene-co-butylene)-b-polystyrene triblock copolymers[J].Macromolecules,2015,48(19):7085-7095.
[20] Liu L,Chu X M,Liao J Y,et al.Tuning the properties of poly (2,6-dimethyl-1,4-phenylene oxide) anion exchange membranes and their performance in H2/O2 fuel cells[J].Energy Environment Science,2018,11:435-446.
[21] Park H J,Chu X M,Kim S P,et al.Effect of N-cyclic cationic groups in poly(phenylene oxide)-based catalyst ionomer membranes for anion exchange membrane fuel cells[J].Journal of Membrane Science,2020,608:118183.
[22] Omasta T J,Park A M,Lamanna J M,et al.Beyond catalysis and membranes:Visualizing and solving the challenge of electrode water accumulation and flooding in AEMFCs[J].Energy & Environmental Science,2018,11:551-558.
[23] Lin C,Wang X,Hu E,et al.Quaternized triblock polymer anion exchange membranes with enhanced alkaline stability[J].Journal of Membrane Science,2017,541:358-366.
[1] 汪遵盛, 姚振龙, 张亚宣, 贾徐锦, 欧阳二明. 复合催化剂Bi5O7I/g-C3N4的制备及其光催化降解盐酸四环素的研究[J]. 现代化工, 2022, 42(4): 140-144,150.
[2] 覃鼎浩, 金瑞豪, 金星龙. HCO3-活化过硫酸钠降解苯胺的研究[J]. 现代化工, 2022, 42(3): 104-108.
[3] 李子奚, 杨刚. 新型多元微电解填料对染料废水的降解性能研究[J]. 现代化工, 2021, 41(11): 117-121,127.
[4] 魏煜航, 朱向东, 张占恩. 亚临界水热反应中氯霉素的去除效果及降解机理[J]. 现代化工, 2021, 41(11): 128-131,137.
[5] 贠智超, 樊飞跃, 黄占斌, 侯红. 气相多氯联苯处理技术研究进展[J]. 现代化工, 2021, 41(10): 28-32.
[6] 黄建舒, 苏复, 刘志英, 徐炎华. Ag/AgBr/Bi2MoO6等离子体光催化剂的制备及其降解罗丹明B性能的研究[J]. 现代化工, 2020, 40(9): 89-95.
[7] 宋月红, 代卫丽, 周春生, 赵杰, 赵敬哲. 组装态Bi5O7I纳米材料的制备及其光催化性能研究[J]. 现代化工, 2020, 40(7): 100-104.
[8] 冉孟家, 谷晋川, 余乐. TiO2/锂硅粉-H2O2体系光催化降解邻苯二甲酸二甲酯机理分析[J]. 现代化工, 2020, 40(3): 167-171,175.
[9] 孙嵩岚, 王乾峰, 杨寅帅, 梁山, 张楠, 吴雪梅, 贺高红. 同轴电纺碳纳米管掺杂咪唑聚砜阴离子交换膜的研究[J]. 现代化工, 2020, 40(2): 99-104.
[10] 孙啊朋, 莫润阳, 王成会, 杜栋栋. 分层型Bi2WO6声催化协同降解亚甲基蓝的研究[J]. 现代化工, 2019, 39(3): 122-126.
[11] 郑旭莹, 杨佳睿, 王吉林, 王璐璐, 封瑞江. 聚乙烯醇链接二苯并18冠6构筑燃料电池用阴离子导电膜的研究[J]. 现代化工, 2018, 38(12): 109-113.
[12] 江冲, 连军锋, 孙龙, 朱易春, 沙海超. UV/氯高级氧化工艺研究进展[J]. 现代化工, 2018, 38(11): 29-33.
[13] 张皓天, 杨平, 崔珺, 王吉林, 王璐璐, 王一夫, 万贺廷. QCS-CM-Guanidine全互穿网络阴离子交换膜的制备及其性能[J]. 现代化工, 2017, 37(8): 98-103.
[14] 汪涛, 张典典, 王志强, 董博颖, 马江红, 袁路子. 磁场强化技术在污水处理中的研究进展[J]. 现代化工, 2017, 37(7): 29-31,33.
[15] 汪涛, 张贺, 张沙, 黄超. 超声波联用技术在污水处理中的研究进展[J]. 现代化工, 2015, 35(7): 10-13.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备09035943号-37
版权所有 © 《现代化工》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn