Please wait a minute...
 
最新公告: 重要提醒:骗子冒充编辑部要求加作者微信,谨防上当!   关于暑假、寒假期间版面费发票及期刊样刊延迟邮寄的通知    
现代化工  2022, Vol. 42 Issue (3): 216-220    DOI: 10.16606/j.cnki.issn0253-4320.2022.03.043
  工业技术 本期目录 | 过刊浏览 | 高级检索 |
油基钻屑高温等离子体气化熔融处理技术研究
文平1, 于海龙2, 吴曙程2
1. 中石化华东石油工程公司, 江苏 南京 210019;
2. 常州大学石油工程学院, 江苏 常州 213164
Study on high temperature plasma gasification-melting treatment of oil-based drilling cuttings
WEN Ping1, YU Hai-long2, WU Shu-cheng2
1. East China Petroleum Engineering Company, Sinopec, Nanjing 210019, China;
2. School of Petroleum Engineering, Changzhou University, Changzhou 213164, China
下载:  PDF (1488KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了降低钻井成本,简化处置流程,减少油基钻屑转运带来的安全隐患,设计了一种撬装式高温等离子体气化及熔融处理系统及装置。介绍该系统的各个模块及运行原理,并进行了关键装置的结构设计和传热计算,同时对该系统部分实验结果进行了验算,得出该系统产出合成气热值为266 844 kJ/h,占输入燃料热值的81%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
文平
于海龙
吴曙程
关键词:  油基钻屑  高温等离子体  气化  熔融  固体废弃物    
Abstract: With the increasing intensity of shale gas exploitation year by year,the amount of oil-based drilling cuttings needs to be dealt with is also increasing.Oil-based drilling cuttings are dangerous solid wastes,and their disposal costs account for a large proportion of drilling costs.In order to reduce the drilling cost,simplify the disposal process,and reduce the safety risks caused by oil-based drilling cuttings transport,a skid-mounted high-temperature plasma gasification and melting treatment system and device is designed.Each module of the system and the principle of operation are introduced,and the structure design and heat transfer calculation for key devices are carried out,and some experimental results of the system are checked.The calorific value of syngas produced by the system is 266,844 kJ·L-1,accounting for 81% of the calorific value of the input fuel.
Key words:  oil-based drilling cuttings    high temperature plasma    gasification    melt    solid wastes
收稿日期:  2021-11-22      修回日期:  2022-01-21           出版日期:  2022-03-20
ZTFLH:  TH3  
作者简介:  文平(1970-),男,本科,高级工程师,研究方向为石油钻井工程,wenping.oshd@sinopec.com;于海龙(1982-),男,博士,教授,研究方向为固废处理、新能源与多能互补技术,通讯联系人,yhl@cczu.edu.cn。
引用本文:    
文平, 于海龙, 吴曙程. 油基钻屑高温等离子体气化熔融处理技术研究[J]. 现代化工, 2022, 42(3): 216-220.
WEN Ping, YU Hai-long, WU Shu-cheng. Study on high temperature plasma gasification-melting treatment of oil-based drilling cuttings. Modern Chemical Industry, 2022, 42(3): 216-220.
链接本文:  
https://www.xdhg.com.cn/CN/10.16606/j.cnki.issn0253-4320.2022.03.043  或          https://www.xdhg.com.cn/CN/Y2022/V42/I3/216
[1] 孙根行,王丽芳,符丹,等.废弃油基钻井岩屑焚烧处理基础[J].钻井液与完井液,2017,34(3):59-63,67.
[2] 卫清茂.浅谈钻井固化土堆放场工程设计[J].内蒙古石油化工,2015,(21):62-63.
[3] 杜国勇,熊大富,刘宇程,等.完钻井井场混合液固化处理技术研究[J].石油与天然气化工,2006,35(3):242-243.
[4] 赵敏,张海玲,杨琴.国内外含油污泥处理处置的标准研究[C].中国环境科学学会学术年会论文集,2014.
[5] 单海霞,何焕杰,袁华玉,等.油基钻屑处理技术研究进展[J].河南化工,2012,(15):26-29.
[6] 胡佑立.新形势下页岩气开发建设中存在的环保问题及处理技术[J].中小企业管理与科技:下旬刊,2017,(6):64-65.
[7] Junttila J,Dijkstra N,Aagaard-Sorensen S.Spreading of drill cuttings and sediment recovery of three exploration wells of different ages,SW Barents Sea,Norway[J].Marine Pollution Bulletin,2018,135:224-238.
[8] Angle C W,Dabros T,Hamza H A.Demulsifier effectiveness in treating heavy oil emulsion in the presence of fine sands in the production fluids[J].Energy & Fuels,2007,21(2):912-919.
[9] Yang Liqing,Wang Haojing,Wang Hongfei,et al.Solid waste plasma disposal plant[J].Journal of Electrostatics,2011,69(5):411-413.
[10] Tang L,Huang H,Hao H,et al.Development of plasma pyrolysis/gasification systems for energy efficient and environmentally sound waste disposal[J].Journal of Electrostatics,2013,71(5):839-847.
[11] Arena U.Process and technological aspects of municipal solid waste gasification.A review[J].Waste Management,2012,32(4):625-639.
[12] Chris Higman,Maarten van der Burgt.Chapter 5-gasification processes[M].London:Gasification Elsevier Inc,2003.
[13] 朱凤森.旋转滑动弧等离子体裂解生活垃圾气化焦油化合物的基础研究[D].杭州:浙江大学,2018.
[14] 赵增立,李海滨,吴创之,等.生物质等离子体气化研究[J].太阳能学报,2005,(4):468-472.
[15] Prieto G,Okumoto M,Shimano K,et al.Reforming of heavy oil using nonthermal plasma[J].IEEE Transactions on Industry Applications,2001,37(5):1464-1467.
[16] Diaz G,Leal-Quiros E,Smith R A,et al.Syngas generation from organic waste with plasma steam reforming[J].Journal of Physics Conference,2014,511:012081.
[17] Rqfiq M H,Hustad J E.Biosyngas production by autothermal reforming of waste cooking oil with propane using a plasma-assisted gliding arc reactor[J].International Journal of Hydrogen Energy,2011,36(14):8221-82334.
[18] Chernets O V,Korzhyk V M,Marynsky G S,et al.Electric arc steam plasma conversion of medicine waste and carbon containing materials [C].International Conference on Gas Discharges,2008:465-468.
[19] PETA international.National cheng kung university-tainan,taiwan[OL].[2009-04-09].http://www.peat.com/national-cheng.html.
[20] Internet Archive.AlterNRGannouncescommissioning of biomass gasifier at waste toliquidsfacility in China[OL].[2013-03-07].https://web.archive.org/web/20130307175931.
[21] 等离子体气化技术落地贵州毕节[OL].[2014-06-13].http://gxt.guizhou.gov.cn/gxdt/szdt/201611/t20161107-9552281.html.
[22] 中国环卫科技网.揭秘一万度高温垃圾熔融处理技术:能代替垃圾焚烧吗?[OL].[2018-08-29].https://www.cn-hw.net/news/201808/29/40201-1.html.
[1] 王葳, 黎汉生, 欧阳梦洁, 吴芹, 陈康成. 基于聚二甲基硅氧烷的渗透气化膜改性技术研究进展[J]. 现代化工, 2022, 42(3): 16-20,25.
[2] 王林露, 冯爱欣, 王梦奇, 胡金祥, 龚淼. 含氮生物质超临界水气化研究进展[J]. 现代化工, 2021, 41(S1): 15-20.
[3] 冯爱欣, 王林露, 王梦奇, 胡金祥, 龚淼. 城市污泥超临界水气化处理研究进展[J]. 现代化工, 2021, 41(S1): 42-47,53.
[4] 孟庆云, 姜海纳. 超临界水-煤气化技术制可燃气的研究进展[J]. 现代化工, 2021, 41(7): 72-77.
[5] 莫永强, 李洪亮, 方书起, 常春, 陈俊英. 城市生活垃圾气化制合成气研究进展[J]. 现代化工, 2021, 41(5): 73-77.
[6] 李明, 吴红丹, 周志辉. 渗透气化膜分离混合有机溶剂研究进展[J]. 现代化工, 2021, 41(4): 43-47.
[7] 曹子昂, 王雷, 吴影, 朱跃钊. 催化剂对生物质气化制氢的影响研究进展[J]. 现代化工, 2021, 41(12): 47-52.
[8] 黄习兵. IGCC多联产项目煤气化技术选择[J]. 现代化工, 2021, 41(11): 197-200,205.
[9] 魏文科. 褐煤4.0 MPa碎煤加压气化炉的设计优化与改进[J]. 现代化工, 2021, 41(11): 206-208,213.
[10] 汪子涵, 蔡婷, 刘国强. 熔融盐法制备二维SiOx/C负极材料及其电化学性能研究[J]. 现代化工, 2021, 41(10): 144-147,152.
[11] 申国鑫, 吴跃, 杨磊, 金政伟. 3种褐煤及其配煤煤灰流动性研究[J]. 现代化工, 2020, 40(S1): 147-150.
[12] 张海峰, 张敏. 不同煤气化技术合成气发酵法制乙醇的可行性探讨[J]. 现代化工, 2020, 40(S1): 279-283.
[13] 杜明洋, 李晓荣. 农药行业小型CO制备工艺路线选择[J]. 现代化工, 2020, 40(S1): 284-287.
[14] 曾鑫, 张静, 张永发, 安英保, 郑琪. 高温、高压、快速加氢热解煤残渣的结构和CO2气化反应性研究[J]. 现代化工, 2020, 40(9): 116-120,125.
[15] 张文博, 张志东, 汤中文. 一种碎煤加压气化高浓酚氨废水生化技术应用[J]. 现代化工, 2020, 40(9): 218-221,226.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备09035943号-37
版权所有 © 《现代化工》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn