Please wait a minute...
 
最新公告: 重要提醒:骗子冒充编辑部要求加作者微信,谨防上当!   关于暑假、寒假期间版面费发票及期刊样刊延迟邮寄的通知    
现代化工  2022, Vol. 42 Issue (3): 159-163    DOI: 10.16606/j.cnki.issn0253-4320.2022.03.032
  科研与开发 本期目录 | 过刊浏览 | 高级检索 |
超重力强化电沉积去除废水中镉离子
吴彩彩, 高璟, 刘有智, 钟鹤鹏, 范一帆
中北大学超重力化工过程山西省重点实验室, 中北大学化学工程与技术学院, 山西 太原 030051
Removal of Cd2+ from wastewater by high-gravity intensified electrodeposition
WU Cai-cai, GAO Jing, LIU You-zhi, ZHONG He-peng, FAN Yi-fan
Shanxi Provincial Key Laboratory of Higee-Oriented Chemical Engineering, School of Chemical Engineering and Technology, North University of China, Taiyuan 030051, China
下载:  PDF (2877KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用阴极电沉积去除废水中重金属Cd2+,并进行过程强化提高Cd2+去除率,解决废水中重金属Cd2+永久残留问题,同时回收Cd资源。结果表明,电沉积去除废水中Cd2+过程受扩散控制,磁力搅拌强化电沉积使Cd2+去除率达85.4%。在相同条件下,超重力强化使Cd2+去除率达99.4%,比磁力搅拌电沉积提高了14%。动力学研究表明,两种强化电沉积去除废水中Cd2+过程均符合表观一级反应动力学规律。SEM和XRD分析表明,两种强化获得的沉积物均由Cd和Cd (OH)2组成,超重力使其形貌由不稳定生长的枝晶结构变为稳定生长的片状结构。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴彩彩
高璟
刘有智
钟鹤鹏
范一帆
关键词:  电沉积  重金属废水  镉离子  动力学  沉积物    
Abstract: Cd2+ in wastewater is removed by cathode electrodeposition method,which is intensified to enhance the removal rate,solve the Cd2+ permanent residue problem,and recover Cd resources.The results show that the removal process of Cd2+ from wastewater by electrodeposition is controlled by the diffusion,and the removal efficiency of Cd2+ reaches 85.4% through the electrodeposition intensified by magnetic stirring.Under the same conditions,the removal efficiency of Cd2+ can reach 99.4% by high-gravity intensified electrodeposition,and 14% higher than that by magnetic stirring intensified electrodeposition.It is shown through kinetic studies that both intensified electrodeposition processes for removing Cd2+ from wastewater conform with the apparent first-order reaction kinetics law.SEM and XRD analysis show that the deposits are composed of Cd and Cd(OH)2 under both intensification processes.High-gravity can make the deposits morphology change from unstably grown dendrite structure to stably grown flaky structure.
Key words:  electrodeposition    heavy metals-containing wastewater    cadmium ion    kinetics    deposits
收稿日期:  2021-11-08      修回日期:  2022-01-05           出版日期:  2022-03-20
ZTFLH:  TQ151  
基金资助: 山西省自然科学基金(201901D111173)
作者简介:  吴彩彩(1995-),女,硕士研究生,研究方向为电沉积处理重金属废水及其过程强化,Wucaicai-0814@163.com;高璟(1982-),女,博士,教授,研究方向为超重力强化电化学反应过程及其用于废水清洁化治理,通讯联系人,zbgaojing@163.com。
引用本文:    
吴彩彩, 高璟, 刘有智, 钟鹤鹏, 范一帆. 超重力强化电沉积去除废水中镉离子[J]. 现代化工, 2022, 42(3): 159-163.
WU Cai-cai, GAO Jing, LIU You-zhi, ZHONG He-peng, FAN Yi-fan. Removal of Cd2+ from wastewater by high-gravity intensified electrodeposition. Modern Chemical Industry, 2022, 42(3): 159-163.
链接本文:  
https://www.xdhg.com.cn/CN/10.16606/j.cnki.issn0253-4320.2022.03.032  或          https://www.xdhg.com.cn/CN/Y2022/V42/I3/159
[1] Liu Z C,Wang L T,Lv Y Z,et al.Impactful modulation of micro-structures of acid-resistant picolylamine-based chelate resins for efficient separation of heavy metal cations from strongly acidic media[J].Chemical Engineering Journal,2021,420:129684.
[2] Kim Y,Kim K,Eom H H,
et al.Electrochemically-assisted removal of cadmium ions by redox active Cu-based metal-organic framework[J].Chemical Engineering Journal,2021,421:129765.
[3] Liu B X,Li C,Zhang L N,
et al.Fabrication of three-dimensional ordered macroporous/mesoporous magnesium oxide for efficient cadmium removal[J].Ceramics International,2021,47(16):22830-22838.
[4] Choumane R,Peulon S.Development of an efficient electrochemical process for removing and separating soluble Pb(Ⅱ) in aqueous solutions in presence of other heavy metals:Studies of key parameters[J].Chemical Engineering Journal,2021,423:130161.
[5] Huy D H,Seelen E,Liem-Nguyen V.Removal mechanisms of cadmium and lead ions in contaminated water by stainless steel slag obtained from scrap metal recycling[J].Journal of Water Process Engineering,2020,36:101369.
[6] Yuan S G,Hong M F,Li H,
et al.Contributions and mechanisms of components in modified biochar to adsorb cadmium in aqueous solution[J].Science of the Total Environment,2020,733:139320.
[7] Bashir A,Malik L A,Ahad S,
et al.Removal of heavy metal ions from aqueous system by ion-exchange and biosorption methods[J].Environmental Chemistry Letters,2019,17(2):729-754.
[8] Leong Y K,Chang J S.Bioremediation of heavy metals using microalgae:Recent advances and mechanisms[J].Bioresource Technology,2020,303:122886.
[9] Liu W,Wang D J,Soomro R A,
et al.Ceramic supported attapulgite-graphene oxide composite membrane for efficient removal of heavy metal contamination[J].Journal of Membrane Science,2019,591:117323.
[10] 于栋,罗庆,苏伟,等.重金属废水电沉积处理技术研究及应用进展[J].化工进展,2020,39(05):1938-1949.
[11] Abbar A H,Salman R H,Abbas A S.Cadmium removal using a spiral-wound woven wire meshes packed bed rotating cylinder electrode[J].Environmental Technology & Innovation,2019,13:233-243.
[12] Wang M,Wang Z,Guo Z C.Deposit structure and kinetic behavior of metal electrodeposition under enhanced gravity-induced convection[J].Journal of Electroanalytical Chemistry,2015,744:25-31.
[13] Wang M Y,Gong X Z,Wang Z.Sustainable electrochemical recovery of high-purity Cu powders from multi-metal acid solution by a centrifuge electrode[J].Journal of Cleaner Production,2018,204:41-49.
[14] 曹华珍,舒燕翔,张煜峰,等.含As(Ⅲ)盐酸体系阴极反应动力学[J].中国有色金属学报,2018,28(12):2551-2557.
[15] Jiao W Z,Qin Y J,Luo S,
et al.Simultaneous formation of nanoscale zero-valent iron and degradation of nitrobenzene in wastewater in an impinging stream-rotating packed bed reactor[J].Chemical Engineering Journal,2017,321:564-571.
[16] Gilhotra V,Yadav R,Sugha A,
et al.Electrochemical treatment of high strength chrome bathwater:A comparative study for best-operating conditions[J].Cleaner Engineering and Technology,2021,2:100093.
[17] Ren X L,Wei Q F,Liu Z,
et al.Electrodeposition conditions of metallic nickel in electrolytic membrane reactor[J].Transactions of Nonferrous Metals Society of China,2012,22(2):467-475.
[18] Mohan D,Pittman Jr C U,Bricka M,
et al.Sorption of arsenic,cadmium,and lead by chars produced from fast pyrolysis of wood and bark during bio-oil production[J].Journal of Colloid and Interface Science,2007,310(1):57-73.
[19] 于常武,刘春怡,周立岱,等.磁载TiO2光催化剂处理喷漆废水的影响因素及动力学特性[J].环境污染与防治,2019,41(10):1137-1141.
[20] Wang Y F,Xu W J,Zhuo Q F,et al .Electrochemical recovery of metals from cadmium wastewater[J].Chemistry Letters,2014,43(8):1312-1314.
[1] 陈诗瑶, 申峻, 王玉高, 牛艳霞, 刘刚, 盛清涛. 甲醇制芳烃反应及生产工艺研究进展[J]. 现代化工, 2022, 42(2): 57-60,67.
[2] 张亚杰, 陆金仁, 包木太, 李一鸣. ZFO/TNAs复合材料的制备及其光催化性能研究[J]. 现代化工, 2022, 42(1): 90-94.
[3] 胡康, 刘世念, 龙一飞, 赵宁, 胡将军. 钛基氧化物阳极的制备及电解脱硫废水制氯研究[J]. 现代化工, 2022, 42(1): 100-104.
[4] 李鹏, 安咏琪, 周峰, 赵瑛祁, 苑兴洲, 马会霞, 张健. 钾改性CuZnAl催化醇脱氢生成甲乙酮反应动力学研究[J]. 现代化工, 2021, 41(9): 129-134.
[5] 汤雁婷, 申文静, 郭一帆, 杨洋, 相丹丹, 郭泉辉. HKUST-1吸附噻吩和二苯并噻吩性能研究[J]. 现代化工, 2021, 41(8): 117-121.
[6] 张继红, 张国凯, 王乐心, 陈梦洁, 冯卓, 李亚男. 高铁酸钾及其优化工艺氧化降解吲哚的效能研究[J]. 现代化工, 2021, 41(8): 149-154.
[7] 余杨, 王黎, 鲁逸飞, 胡雨莎, 廖梦根. 碳纳米管/氧化石墨烯复合电极制备及除镉研究[J]. 现代化工, 2021, 41(6): 134-139.
[8] 何玲, 孙福海, 徐琪鹏. 电沉积法从废弃FCC催化剂中回收稀土元素的研究[J]. 现代化工, 2021, 41(5): 108-113.
[9] 霍宇辰, 靳岩, 张茜, 王晓东, 黄伟. 分子筛吸附脱除2-甲基四氢呋喃中水的研究[J]. 现代化工, 2021, 41(3): 134-139.
[10] 陈俊池, 张培立. 电沉积CoCuP催化水氧化性能研究[J]. 现代化工, 2021, 41(3): 170-174.
[11] 李鹏, 谢磊, 王彦娟, 张健, 周峰. Cu系催化剂制备及其催化醇脱氢反应进展[J]. 现代化工, 2021, 41(2): 75-80.
[12] 张奇, 李雪蒙, 商辉, 张文慧. 微波电场对高凝原油体系中分子性质的影响[J]. 现代化工, 2021, 41(2): 229-234,240.
[13] 曹子昂, 王雷, 吴影, 朱跃钊. 催化剂对生物质气化制氢的影响研究进展[J]. 现代化工, 2021, 41(12): 47-52.
[14] 关桦楠, 张悦, 孙冰玉, 刘博, 瑙阿敏, 徐丽萍. 基于谷胱甘肽修饰金纳米粒子可视化检测镉离子残留的研究[J]. 现代化工, 2021, 41(12): 230-234.
[15] 陈和祥, 张君, 朱宪忠, 王卉. 二氧化钛纳米阵列的制备与光电催化性能研究[J]. 现代化工, 2021, 41(11): 143-147.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备09035943号-37
版权所有 © 《现代化工》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn