Please wait a minute...
 
最新公告: 重要提醒:骗子冒充编辑部要求加作者微信,谨防上当!   关于暑假、寒假期间版面费发票及期刊样刊延迟邮寄的通知    
现代化工  2022, Vol. 42 Issue (3): 55-58,63    DOI: 10.16606/j.cnki.issn0253-4320.2022.03.012
  技术进展 本期目录 | 过刊浏览 | 高级检索 |
铜基催化剂电还原CO2制乙醇的研究
牛宏伟1, 马园园1, 付豪1, 廉红蕾1,2
1. 郑州大学化工学院先进功能材料制造教育部工程研究中心, 河南 郑州 450000;
2. 煤基生态精细化工河南省工程实验室, 河南 郑州 450000
Study on electrocatalytic reduction of CO2 to ethanol over copper-based catalysts
NIU Hong-wei1, MA Yuan-yuan1, FU Hao1, LIAN Hong-lei1,2
1. Engineering Research Center of Advanced Functional Material Manufacturing of Ministry of Education, School of Chemical Engineering, Zhengzhou University, Zhengzhou 450000, China;
2. Henan Provincial Engineering Laboratory of Coal-based Ecological Fine Chemicals, Zhengzhou 450000, China
下载:  PDF (1614KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 综述了CO2电化学还原为乙醇的反应机理及用于该反应的铜基催化剂研究进展,包括Cu单质、Cu-M合金、Cu基氧化物及其衍生物和Cu基复合材料;同时介绍了影响催化性能的主要因素,如催化剂粒径、催化剂形貌、电解液组成等,最后展望了Cu基催化剂在CO2电化学还原为乙醇领域的研究前景,通过优化电极材料和探究金属与载体相互作用,同时结合理论计算来探明反应机理,将有助于开发更高效的电催化材料。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
牛宏伟
马园园
付豪
廉红蕾
关键词:  二氧化碳  电化学  铜基催化剂  乙醇    
Abstract: The reaction mechanism in electrocatalytic reduction of CO2 to ethanol is reviewed,and the research progress about copper-based catalysts for the reaction are summed up.The catalysts involved include Cu element,Cu-M alloy,Cu based oxides and their derivatives,and Cu based composites.Main factors affecting the catalytic performance of catalyst,such as catalyst particle size,catalyst morphology,electrolyte composition,etc.are introduced.The research prospect about copper-based catalysts in the electrochemical reduction of CO2 to ethanol is expected.Through optimizing electrode materials and exploring the interaction between metal and carrier,and combining with theoretical calculation to explore the reaction mechanism,it will help to develop more efficient electrocatalysis materials.
Key words:  carbon dioxide    electrochemistry    copper-based catalysts    ethanol
收稿日期:  2021-03-04      修回日期:  2021-12-31           出版日期:  2022-03-20
ZTFLH:  TQ151  
基金资助: 煤基生态精细化工河南省工程实验室开放课题(C202003);河南省科技厅科技攻关项目(172102210129)
作者简介:  牛宏伟(1996-),男,硕士生;廉红蕾(1977-),女,博士,讲师,研究方向为多相催化材料合成及原位光谱表征技术,通讯联系人,hongleilian@zzu.edu.cn。
引用本文:    
牛宏伟, 马园园, 付豪, 廉红蕾. 铜基催化剂电还原CO2制乙醇的研究[J]. 现代化工, 2022, 42(3): 55-58,63.
NIU Hong-wei, MA Yuan-yuan, FU Hao, LIAN Hong-lei. Study on electrocatalytic reduction of CO2 to ethanol over copper-based catalysts. Modern Chemical Industry, 2022, 42(3): 55-58,63.
链接本文:  
https://www.xdhg.com.cn/CN/10.16606/j.cnki.issn0253-4320.2022.03.012  或          https://www.xdhg.com.cn/CN/Y2022/V42/I3/55
[1] Rogelj J,Huppmann D,Krey V,et al.A new scenario logic for the Paris Agreement long-term temperature goal[J].Nature,2019,573(7774):357-363.
[2] Mac Dowell N,Fennell P S,Shah N,et al.The role of CO2 capture and utilization in mitigating climate change[J].Nature Climate Change,2017,7(4):243-249.
[3] Zhu D D,Liu J L,Qiao S Z,et al.Recent advances in inorganic heterogeneous electrocatalysts for reduction of carbon dioxide[J].Advanced Materials,2016,28(18):3423-3452.
[4] Hori Y.Electrochemical CO2 reduction on metal electrodes[J].Modern Aspects of Electrochemistry,2008,(42):89-189.
[5] Nielsen D U,Hu X M,Daasbjerg K,et al.Chemically and electrochemically catalyzed conversion of CO2 to CO with follow-up utilization to value-added chemicals[J].Nature Catalysis,2018,1(4):244-254.
[6] Hong J D,Zhang W,Ren J,et al.Photocatalytic reduction of CO2:A brief review on product analysis and systematic methods[J].Analytical Methods,2013,5(5):1086-1097.
[7] Kortlever R,Shen J,Koper M T M,et al.Catalysts and reaction pathways for the electrochemical reduction of carbon dioxide[J].Journal of Physical Chemistry Letters,2015,6(20):4073-4082.
[8] Call-vallejo F,Koper M T M.Theoretical considerations on the electroreduction of CO to C2 species on Cu(100) electrodes[J].Angewandte Chemie-International Edition,2013,52(28):7282-7285.
[9] Montoya J H,Shi C,Chan K,et al.Theoretical Insights into a CO dimerization mechanism in CO2 electroreduction[J].Journal of Physical Chemistry Letters,2015,6(11):2032-2037.
[10] Supasitmongkol S,Styring P.High CO2 solubility in ionic liquids and a tetraalkylammonium-based poly(ionic liquid)[J].Energy & Environmental Science,2010,3(12):1961-1972.
[11] Shen H M,Sun Q.Cu atomic chain supported on graphene nanoribbon for effective conversion of CO2 to ethanol[J].Chem Phys Chem,2020,21(16):1768-1774.
[12] 杨满平.氧化铜电还原二氧化碳合成乙醇和正丙醇的研究[D].上海:华东师范大学,2019.
[13] Jouny M,Luc W,Jiao F,et al.General techno-economic analysis of CO2 electrolysis systems[J].Industrial & Engineering Chemistry Research,2018,57(6):2165-2177.
[14] Verma S,Kim B,Jhong H,et al.A gross-margin model for defining technoeconomic benchmarks in the electroreduction of CO2[J].Chemsuschem,2016,9(15):1972-1979.
[15] 刘孟岩,王元双,邓雯,等.铜基电催化剂还原CO2[J].化学进展,2018,30(4):398-409.
[16] Kim D,Kley C S,Li Y F,et al.Copper nanoparticle ensembles for selective electroreduction of CO2 to C2-C3 products[J].Peoceedings of the National Academy of Sciences of the United States of America,2017,114(40):10560-10565.
[17] Kwon Y,Lum Y W,Clark E L,et al.CO2 electroreduction with enhanced ethylene and ethanol selectivity by nanostructuring polycrystalline copper[J].Chemelectrochem,2016,3(6):1012-1019.
[18] Hoang T T H,Verma S,Ma S C,et al.Nanoporous copper-silver alloys by additive-controlled electrodeposition for the selective electroreduction of CO2 to ethylene and ethanol[J].Journal of the American Chemical Society,2018,140(17):5791-5797.
[19] Jia F L,Yu X X,Zhang L Z,et al.Enhanced selectivity for the electrochemical reduction of CO2 to alcohols in aqueous solution with nanostructured Cu-Au alloy as catalyst[J].Journal of Power Sources,2014,252:85-89.
[20] 池定惠.纳米氧化铜电催化二氧化碳合成一元醇的研究[D].上海:华东师范大学,2015.
[21] 刘丽.Cu基催化剂的制备及其电还原CO2合成醇的研究[D].上海:华东师范大学,2018.
[22] Song Y,Peng R,Hensley D K,et al.High-selectivity electrochemical conversion of CO2 to ethanol using a copper nanoparticle/N-Doped graphene electrode[J].Chemistryselect,2016,1(19):6055-6061.
[23] Reske R,Mistry H,Behafarid F,et al.Particle size effects in the catalytic electroreduction of CO2 on Cu nanoparticles[J].Joural of the American Chemical Society,2014,136(19):6978-6986.
[24] Chi D H,Yang H P,Du Y F,et al.Morphology-controlled CuO nanoparticles for electroreduction of CO2 to ethanol[J].The Royal Society of Chemistry Advances,2014,4(70):37329-37332.
[25] Omara P B,Wilde P,Beneedtti T M,et al.Cascade reactions in nanozymes:Spatially separated active sites inside Ag-core-porous-Cu-shell nanoparticles for multistep carbon dioxide reduction to higher organic molecules[J].Journal of the American Chemical Society,2019,141(36):14093-14097.
[26] Gao D F,Deo S,Choi Y W,et al.Activity and selectivity control in CO2 electroreduction to multicarbon products over CuO<i>x catalysts via electrolyte design[J].ACS Catalysis,2018,8(11):10012-10020.
[27] 向开松,刘雨程,于海,等.铜基催化剂电还原CO2为多碳产物的提升策略[J].科学通报,2020,65(31):3360-3372.
[28] Wang Y X,Shen H,Livi K J T,et al.Copper nanocubes for CO2 reduction in gas diffusion electrodes[J].Nano Letters,2019,19(12):8461-8468.
[29] Zhu W W,Zhao K M,Liu S Q,et al.Low-overpotential selective reduction of CO2 to ethanol on electrodeposited Cu<i>xAu<i>y nanowire arrays[J].Journal of Energy Chemistry,2019,37:176-182.
[1] 冯曼曼, 方远鑫, 程慧远, 潘东伟, 吴雪梅, 贺高红. 孤立的Ni/Co双金属位点协同催化CO2电还原[J]. 现代化工, 2022, 42(3): 92-97.
[2] 龚浩, 王宇宏, 郭雨菲, 张静, 师倩莹, 高利珍. 铋/纳米洋葱碳电极的制备及其电化学还原CO2性能研究[J]. 现代化工, 2022, 42(3): 144-148.
[3] 秦洪伟, 刘妍, 赵薇, 尤国红. 卡马西平的电化学检测研究[J]. 现代化工, 2022, 42(3): 238-241.
[4] 吴天. Fenton-电氧化工艺处理垃圾渗滤液纳滤浓缩液的中试研究[J]. 现代化工, 2022, 42(2): 25-30.
[5] 弓浩宇, 杨幸川, 方鑫, 刘国际, 徐丽. 响应面法优化己二酸二甲酯低压催化加氢工艺研究[J]. 现代化工, 2022, 42(2): 172-176.
[6] 卫郝, 酒红芳, 徐倩文, 王聪丽, 陈星星. 含钴催化剂电化学析氢研究进展[J]. 现代化工, 2022, 42(1): 76-79,84.
[7] 张振, 李苇杭, 杨英楠, 周张红, 曹伟. 活性炭负载金属铂单原子催化材料的电解析氢性能研究[J]. 现代化工, 2022, 42(1): 95-99.
[8] 周春荣. Co3O4@MnO2空心核壳材料的制备及电容性能研究[J]. 现代化工, 2022, 42(1): 127-131.
[9] 王梦雅, 李世友, 东红, 张宁霜. 石墨烯基复合材料在超级电容器中的应用[J]. 现代化工, 2021, 41(S1): 54-57.
[10] 徐栋, 陈映赫, 韩旭波, 郝国宇, 陆俊波, 兰天庆. CO2置换开采海域天然气水合物联合技术展望[J]. 现代化工, 2021, 41(9): 22-26,32.
[11] 李世豪, 刘保林, 李怡招, 黄雪莉, 刘成龙. 用于CO氧化的铜基催化剂研究进展[J]. 现代化工, 2021, 41(9): 43-47.
[12] 廖石宝, 周玉辉, 李伯英. CO2抽取地热联合驱油封存一体化技术进展[J]. 现代化工, 2021, 41(9): 70-74.
[13] 聂志国, 王野, 王欢. 超级电容器关键材料研究进展[J]. 现代化工, 2021, 41(8): 33-36,41.
[14] 赵薇, 赵文鹏, 刘妍, 连爽, 秦洪伟, 尤国红. L-甲硫氨酸修饰电极检测对氯苯酚[J]. 现代化工, 2021, 41(8): 239-242,247.
[15] 李岩, 吴鹏, 钟鹭斌, 郑煜铭. 基于纳米金的汞离子传感器研究进展[J]. 现代化工, 2021, 41(8): 243-247.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备09035943号-37
版权所有 © 《现代化工》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn