Please wait a minute...
 
最新公告: 重要提醒:骗子冒充编辑部要求加作者微信,谨防上当!   关于暑假、寒假期间版面费发票及期刊样刊延迟邮寄的通知    
现代化工  2022, Vol. 42 Issue (2): 241-246    DOI: 10.16606/j.cnki.issn0253-4320.2022.02.048
  分析测试 本期目录 | 过刊浏览 | 高级检索 |
金纳米双锥体的制备及对食品污染物的快速检测
栾龙龙1, 汪胜1, 张祥2, 王娟3, 汪倩倩3, 徐维平1,4
1. 合肥工业大学化学与化工学院, 安徽 合肥 230009;
2. 中国科学技术大学生命科学与医学部, 安徽 合肥 230026;
3. 安徽中医药大学药学院, 安徽 合肥 230012;
4. 中国科学技术大学生命科学与医学部(中国科学技术大学第一附属医院), 安徽 合肥 230001
Preparation of gold nanobiparamid and its application in rapid detection of food contaminants
LUAN Long-long1, WANG Sheng1, ZHANG Xiang2, WANG Juan3, WANG Qian-qian3, XU Wei-ping1,4
1. School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China;
2. Life Sciences and Medicine Division, University of Science and Technology of China, Hefei 230026, China;
3. College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China;
4. The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
下载:  PDF (3246KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 制备了一种新颖、可靠、快速的检测平台用于检测食品中多种化学污染物。通过种子两步生长法合成出金纳米双锥体,采用消耗诱导分离法获得纯度接近100%的金纳米双锥体,利用液-液界面自组装法制备出大面积致密的金纳米双锥体表面增强拉曼散射(SERS)活性基底。研究表明,以结晶紫(CV)作为拉曼探针分子,该基底具有较好的SERS灵敏性和重复性;而且对抗生素孔雀石绿(MG)、农药残留福美双(THR)和塑化剂邻苯二甲酸卞酯(BBP)的检测灵敏性较高,检测限分别达到10-9、10-9、10-8 mol/L,对酒中BBP的检测限为1.3 mg/kg。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
栾龙龙
汪胜
张祥
王娟
汪倩倩
徐维平
关键词:  金纳米双锥体  消耗诱导分离  液-液界面自组装  表面增强拉曼光谱  食品污染物    
Abstract: A novel, reliable and rapid detection platform is developed to detect various chemical pollutants in food.Gold nanobiparamid is synthesized by means of a two-step seed growth method, and then gold nanobiparamid with a purity close to 100% is obtained through consumption-induced separation method.Finally, a large-area dense gold nanobiparamid surface-enhanced Raman scattering (SERS) active substrate is prepared through a liquid-liquid interface self-assembly method.The results indicate that the prepared substrate exhibits excellent SERS sensitivity and repeatability when crystalline violet (CV) is used as Raman probe molecule.Moreover, the prepared substrate shows high detection sensitivity to malachite green (antibiotic), thiram (pesticide residues) and butyl benzyl phthalate (plasticizer) in food, with detection limits of 10-9 mol·L-1, 10-9 mol·L-1 and 10-8 mol·L-1, respectively.In addition, its detection limit to butyl benzyl phthalate in wine achieves 1.3 mg·kg-1.
Key words:  gold nanobiparamid    consumption-induced separation    liquid-liquid interface self-assembly    surface enhanced Raman spectroscopy    food contaminants
收稿日期:  2021-03-10      修回日期:  2021-12-09          
ZTFLH:  R155  
基金资助: 国家自然科学基金项目(52072360,51672004);安徽省科技攻关项目(1804h08020252)
通讯作者:  徐维平(1964-),男,博士,教授,研究方向为无机非金属类生物材料和药剂学、药理学,通讯联系人,weipingx@ustc.edu.cn。    E-mail:  weipingx@ustc.edu.cn
作者简介:  栾龙龙(1995-),男,硕士生
引用本文:    
栾龙龙, 汪胜, 张祥, 王娟, 汪倩倩, 徐维平. 金纳米双锥体的制备及对食品污染物的快速检测[J]. 现代化工, 2022, 42(2): 241-246.
LUAN Long-long, WANG Sheng, ZHANG Xiang, WANG Juan, WANG Qian-qian, XU Wei-ping. Preparation of gold nanobiparamid and its application in rapid detection of food contaminants. Modern Chemical Industry, 2022, 42(2): 241-246.
链接本文:  
https://www.xdhg.com.cn/CN/10.16606/j.cnki.issn0253-4320.2022.02.048  或          https://www.xdhg.com.cn/CN/Y2022/V42/I2/241
[1] Wang C,Roy P,Juluri B,et al.A SERS tattoo for in situ,ex situ,and multiplexed detection of toxic food additives[J].Sensors and Actuators B:Chemical,2018,261:218-225.
[2] Zhou Y,Li J,Zhang L,et al.HS-beta-cyclodextrin-functionalized Ag@Fe3O4@Ag nanoparticles as a surface-enhanced Raman spectroscopy substrate for the sensitive detection of butyl benzyl phthalate[J].Anal Bioanal Chem,2019,411(22):5691-5701.
[3] Guo P,Sikdar D,Huang X,et al.Plasmonic core-shell nanoparticles for SERS detection of the pesticide thiram:size-and shape-dependent Raman enhancement[J].Nanoscale,2015,7:2862-2868.
[4] Jiang J,Shen Q,Xue P,et al.A highly sensitive and stable SERS sensor for malachite green detection based on Ag nanoparticles in situ generated on 3D MoS2 nanoflowers[J].Inorganic Chemistry,2020,5:354-359.
[5] Friedel D,Jacek B,Senthilvelrajan K,et al.A combinatorial native MS and LC-MS/MS approach reveals high intrinsic phosphorylation of human Tau but minimal levels of other key modifications[J].J Biol Chem,2020,295(52):18213-18225.
[6] Zhang H,Chen X,Jiang X.Determination of phthalate esters in water samples by ionic liquid cold-induced aggregation dispersive liquid-liquid microextraction coupled with high-performance liquid chromatography[J].Anal Chim Acta,2011,689(1):137-142.
[7] Ly T,Ho T,Behra P,et al.Determination of 400 pesticide residues in green tea leaves by UPLC-MS/MS and GC-MS/MS combined with QuEChERS extraction and mixed-mode SPE clean-up method[J].Food Chem,2020,326:126928.
[8] Nagabooshanam S,John A,Wadhwa S,et al.Electro-deposited nano-webbed structures based on polyaniline/multi walled carbon nanotubes for enzymatic detection of organophosphates[J].Food Chemistry,2020,323:126784.
[9] Alsammarraie F K,Lin M.Using standing gold nanorod arrays as surface-enhanced raman spectroscopy (SERS) substrates for detection of carbaryl residues in fruit juice and milk[J].J Agric Food Chem,2017,65(3):666-674.
[10] Schlucker S.Surface-enhanced Raman spectroscopy:Concepts and chemical applications[J].Angew Chem Int Ed Engl,2014,53(19):4756-4795.
[11] Pu H,Xie X,Sun D,et al.Double strand DNA functionalized Au@Ag Nps for ultrasensitive detection of 17beta-estradiol using surface-enhanced raman spectroscopy[J].Talanta,2019,195:419-425.
[12] Zong C,Xu M,Xu L,et al.Surface-enhanced raman spectroscopy for bioanalysis:Reliability and challenges[J].Chem Rev,2018,118(10):4946-4980.
[13] Stiles P,Dieringer J,Shah N,et al.Surface-enhanced Raman spectroscopy[J].Annu Rev Anal Chem:Palo Alto Calif,2008,1:601-626.
[14] Xu L,Li X,Wang X,et al.Evaporation-induced self-assembly of silver nanospheres and gold nanorods on a super-hydrophobic substrate for SERS applications[J].Nanotechnology,2021,32(13):135601.
[15] Li Q,Zhuo X,Li S,et al.Production of monodisperse gold nanobipyramids with number percentages approaching 100% and evaluation of their plasmonic properties[J].Advanced Optical Materials,2015,3(6):801-812.
[16] Zhang Y,Teng Y,Qin Y,et al.Determination of ciprofloxacin in fish by surface-enhanced Raman scattering using a liquid-liquid self-assembled gold nanofilm[J].Anal Lett,2020,53(4):660-670.
[17] Tian Y,Zhang H,Xu L,et al. Self-assembled monolayers of bimetallic Au/Ag nanospheres with superior suface-enhanced Raman scattering activity for ultra-sensitive triphenylmethane dyes detection[J].Opt Lett,2018,43(4):635-638.
[18] Deng D,Lin Q,Li H,et al.Rapid detection of malachite green residues in fish using a surface-enhanced Raman scattering-active glass fiber paper prepared by in situ reduction method[J].Talanta,2019,200:272-278.
[19] Sun L,Wang C.Highly sensitive and rapid Surface Enhanced Raman Spectroscopic (SERS) Determination of Thiram on the Epidermis of Fruits and Vegetables Using A silver nanoparticle-modified fibrous swab[J].Analytical Letters,2020,53:973-983.
[20] Hu X,Wang X,Ge Z,et al.Bimetallic plasmonic Au@Ag nanocuboids for rapid and sensitive detection of phthalate plasticizers with label-free surface-enhanced Raman spectroscopy[J].Analyst,2019,144(12):3861-3869.
[1] 赖宇明. 金纳米星的制备及对塑化剂的快速检测[J]. 现代化工, 2021, 41(4): 234-237.
[2] 陈东, 丘德立, 郑宝成, 谢建晖. SnO2@C锂离子电池负极材料的制备及其性能研究[J]. 现代化工, 2020, 40(3): 116-121.
[3] 王欣如, 张乐, 葛子盼, 王娟, 汪倩倩, 徐维平. Au@Ag纳米三棱锥的制备及对塑化剂的快速检测[J]. 现代化工, 2020, 40(2): 222-225.
[4] 李春晓, 丘德立, 陈东, 刘汗青, 李学良. 高性能锂离子电池负极材料MoO3-x的制备与性能研究[J]. 现代化工, 2019, 39(12): 76-80.
[5] 邱立峰, 张无迪, 张朝峰. CNT@SnO2@C纳米复合物的制备及其储锂性能[J]. 现代化工, 2019, 39(12): 135-139.
[6] 周亚茹, 胡小燕, 王欣如, 徐维平. SERS基底膜的制备及对塑化剂的检测[J]. 现代化工, 2019, 39(3): 113-116,118.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备09035943号-37
版权所有 © 《现代化工》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn