Please wait a minute...
 
最新公告: 重要提醒:骗子冒充编辑部要求加作者微信,谨防上当!   关于暑假、寒假期间版面费发票及期刊样刊延迟邮寄的通知    
现代化工  2022, Vol. 42 Issue (2): 106-111    DOI: 10.16606/j.cnki.issn0253-4320.2022.02.022
  技术进展 本期目录 | 过刊浏览 | 高级检索 |
电吸附除盐技术在燃煤电厂中的应用研究进展
董旭明1, 张胜寒1,2, 卢权1, 檀玉1,2
1. 华北电力大学环境科学与工程系, 河北 保定 071003;
2. 河北省燃煤电站烟气多污染物协同控制重点实验室, 河北 保定 071003
Research progress on application of electro-adsorption desalination technology in coal-fired power plant
DONG Xu-ming1, ZHANG Sheng-han1,2, LU Quan1, TAN Yu1,2
1. Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, China;
2. Hebei Key Lab for Collaborative Control of Multi Pollutants in Flue Gas of Coal Fired Power Station, Baoding 071003, China
下载:  PDF (1412KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 介绍了4种碳电极材料的优缺点;分析了国内外燃煤电厂的电吸附除盐技术应用案例,并结合电厂脱硫废水的特点指出了电吸附技术的发展方向以及存在的一些问题。实际应用结果表明,电吸附技术对水的前处理要求简单。处理能力达到200 m3/h及以上的工业化应用案例表明,电吸附除盐技术处理火力发电厂循环冷却水,在产水率为70%~76%的条件下,硬度、钙硬度以及氯化物的去除率可达65%~80%,电吸附技术处理火力电厂循环冷却水排污水的除盐成本较低。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
董旭明
张胜寒
卢权
檀玉
关键词:  电吸附  燃煤电厂  电极材料    
Abstract: The advantages and disadvantages of four kinds of carbon electrode materials are introduced.The application cases of electro-absorption desalination technology in coal-fired power plants worldwide are analyzed.Combined with the characteristics of the desulfurization wastewater in power plant, the development direction and some problems of electro-adsorption desalination technology are proposed.Practical applications illustrate that electro-adsorption desalination technology requires simple to pretreatment of wastewater.Two cases of industrial scale applications with a processing capacity of 200 cubic meters per hour or more show that the removal rates of hardness, calcium hardness and chlorides can reach 65%-80% when electro-adsorption desalination technology is applied to treat with the circulating cooling water drainage in coal-fired power plants and the water production rate is 70%-76%.The cost of desalination is low.
Key words:  electro-adsorption    coal-fired power plant    electrode materials
收稿日期:  2021-01-28      修回日期:  2021-12-12          
ZTFLH:  X703.01  
通讯作者:  张胜寒(1962-),男,硕士,教授,博士生导师,研究方向为金属腐蚀与防护及废水处理,通讯联系人,zhang-shenghan@163.com。    E-mail:  zhang-shenghan@163.com
作者简介:  董旭明(1995-),男,硕士生,研究方向为涂层老化程度的评估,962540029@qq.com
引用本文:    
董旭明, 张胜寒, 卢权, 檀玉. 电吸附除盐技术在燃煤电厂中的应用研究进展[J]. 现代化工, 2022, 42(2): 106-111.
DONG Xu-ming, ZHANG Sheng-han, LU Quan, TAN Yu. Research progress on application of electro-adsorption desalination technology in coal-fired power plant. Modern Chemical Industry, 2022, 42(2): 106-111.
链接本文:  
https://www.xdhg.com.cn/CN/10.16606/j.cnki.issn0253-4320.2022.02.022  或          https://www.xdhg.com.cn/CN/Y2022/V42/I2/106
[1] 李霞.工业节水的对策与措施浅谈[J].新疆钢铁,2006,(2):48-50.
[2] Souad R,Ibtissem B A,Yosra L,et al.Microporous activated carbon electrode derived from date stone without use of binder for capacitive deionization application[J].Materials Research Bulletin,2019,111:222-229.
[3] Zhu Yueshuai,Zhang Gujia,Xu Chao,et al.Interconnected graphene hollow shells for high-performance capacitive deionization[J].ACS Applied Materials & Interfaces,2020,12(26):29706-29716.
[4] Rudra Kumar,Soujit Sen Gupta,Shishir Katiyar,et al.Carbon aerogels through organo-inorganic co-assembly and their application in water desalination by capacitive deionization[J].Carbon,2016,99:375-383.
[5] Liu Yihan,Zhang Xiongfei,Gu Xiao,et al.One-step turning leather wastes into heteroatom doped carbon aerogel for performance enhanced capacitive deionization[J].Microporous and Mesoporous Materials,2020,303:110303.
[6] Zhu Guang,Hongyan Wang,Haifeng Xu,et al.Enhanced capacitive deionization by nitrogen-doped porous carbon nanofiber aerogel derived from bacterial-cellulose[J].Journal of Electroanalytical Chemistry,2018,822:81-88.
[7] Oren Y.Capacitive deionization (CDI) for desalination and water treatment-past,present and future (a review)[J].Desalination,2008,228(1/2/3):10-29.
[8] Lee J B,Park KK,Eum H M,et al.Desalination of a thermal power plant wastewater by membrane capacitive deionization[J].Desalination,2006,196(1):125-134.
[9] 张旭,提芸,赵波.电吸附技术处理电厂反渗透浓水试验研究[J].给水排水,2013,49(S1):366-368.
[10] 刘江,谢凤龙,张鹏.电吸附技术在电厂废水处理中的试验研究[J].工业水处理,2015,35(4):68-71.
[11] 朱广东,郭洪飞,孙晓慰,等.电吸附技术在电厂水处理系统中的应用[C]//中国脱盐协会:2010中国电力脱盐技术论坛论文集,2010:117-121.
[12] 沈叔云,冯向东,施国忠.电吸附技术在火电厂循环冷却水处理中的应用可行性研究[J].浙江电力,2015,34(11):89-91,99.
[13] 李永辉.电吸附技术在循环冷却水系统排污水处理中的应用[J].工业用水与废水,2012,43(5):71-73.
[14] 黄忠源,李进,祁誉,等.再生水作为发电厂水源的预处理技术经济性评估[J].华北电力技术,2016,(12):38-42.
[15] Zhao R,Biesheuvel P,Van der Wal,et al.Energy consumption and constant current operation in membrane capacitive deionization[J].Energy Environ Sci,2012,5(11):9520-9527.
[16] Hemmatifar A,Palko J W,Stadermann M,et al.Energy breakdown in capacitive deionization[J].Water Res,104:303-311.
[17] Tong T,Elimelech M.The global rise of zero liquid discharge for wastewater management:Drivers,technologies,and future directions[J].Environ Sci Technol,2016,50(13):6846-6855.
[18] Choi J,Dorji P,Shon H K,et al.Applications of capacitive deionization:Desalination,softening,selective removal,and energy efficiency[J].Desalination,2019,449:118-130.
[19] Jiang S,Li Y,Ladewig B P.A review of reverse osmosis membrane fouling and control strategies[J].Sci Total Environ,2017,595:567-583.
[20] Lado J J,Perez-Roa R E,Wouters J J,et al.Evaluation of operational parameters for a capacitive deionization reactor employing asymmetric electrodes[J].Separ Purif Technol,2014,133:236-245.
[21] Kołodynska D,Krukowska J,Thomas P.Comparison of sorption and desorption studies of heavy metal ions from biochar and commercial active carbon[J].Chem Eng J,2017,307:353-363.
[22] Inyang M I,Gao B,Yao Y,et al.A review of biochar as a low-cost adsorbent for aqueous heavy metal removal[J].Crit Rev Environ Sci Technol,2016,46(4):406-433.
[23] Xu J,Cao Z,Zhang Y,et al.A review of functionalized carbon nanotubes and graphene for heavy metal adsorption from water:preparation,application,and mechanism[J].Chemosphere,2018,195:351-364.
[24] Wang J,Wang L,Miao R,et al.Enhanced gypsum scaling by organic fouling layer on nanofiltration membrane:Characteristics and mechanisms[J].Water Res,2016,91:203-213.
[1] 蒋奕锋, 王家伟, 汪涛, 张永生. 1 000 MW超低排放燃煤机组湿法脱硫和湿式电除尘运行性能及废水排放工艺研究[J]. 现代化工, 2021, 41(S1): 324-327.
[2] 吕妍妍, 刘菲, 白改玲, 杨妍. 碳纳米球纤维基电极材料的制备及性能研究[J]. 现代化工, 2021, 41(5): 137-142.
[3] 宗志强, 王冬芳, 叶静宏, 张小江, 蔡冬清. 燃料电池重金属修复技术与应用研究进展[J]. 现代化工, 2021, 41(11): 48-52,57.
[4] 王智麟, 张胜寒, 祁伟健. 燃煤电厂脱硫废水中氯离子脱除技术研究进展[J]. 现代化工, 2021, 41(11): 67-71,76.
[5] 王昭, 张洪铨, 张琪, 史高峰. 过渡金属化合物电极材料的研究进展[J]. 现代化工, 2020, 40(6): 11-14.
[6] 麻晓越, 刘宁. 燃煤电厂工业废水零排放技术研究[J]. 现代化工, 2020, 40(10): 45-49.
[7] 许世超, 穆春盛, 朱天哲, 乔阳. NiCo2O4修饰活性炭纤维作为超级电容器正极材料及其性能研究[J]. 现代化工, 2019, 39(8): 143-146.
[8] 康孟孟, 赵翰庆, 宋玮, 叶建岐, 李忠. 不同维度的煤基纳米碳材料的制备及储能应用[J]. 现代化工, 2019, 39(8): 49-53.
[9] 莫恒亮, 唐阳, 陈咏梅, 万平玉. 流动电极电吸附(FCDI)与电渗析(ED)耦合实现连续脱盐技术研究[J]. 现代化工, 2019, 39(5): 91-95.
[10] 陈瑶, 宋永辉, 周军, 田宇红, 兰新哲. KOH溶液浸渍法活化处理煤基电极材料的研究[J]. 现代化工, 2019, 39(5): 114-118.
[11] 徐畅, 陆勇, 陈璐, 上官秋豪. 燃煤电厂超低排放背景下颗粒物在线测量方法研究[J]. 现代化工, 2019, 39(11): 221-225.
[12] 唐朝春, 许荣明. 电吸附水处理技术研究进展[J]. 现代化工, 2019, 39(10): 15-19,23.
[13] 刘之琳, 李轩, 刘潇, 徐文强. 燃煤电厂对冬季PM2.5和O3污染影响解析[J]. 现代化工, 2018, 38(9): 15-19.
[14] 张思华, 苏伟, 童震松, 宋存义, 刘俊杰. 燃煤电厂烟尘超低排放控制技术研究现状及工程应用[J]. 现代化工, 2018, 38(2): 162-165.
[15] 苏婷, 宋永辉, 兰新哲, 景兴鹏, 周军. 超声辅助活化煤基电极材料的研究[J]. 现代化工, 2018, 38(10): 76-79,81.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备09035943号-37
版权所有 © 《现代化工》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn