Please wait a minute...
 
最新公告: 重要提醒:骗子冒充编辑部要求加作者微信,谨防上当!   关于暑假、寒假期间版面费发票及期刊样刊延迟邮寄的通知    
现代化工  2022, Vol. 42 Issue (1): 162-166    DOI: 10.16606/j.cnki.issn0253-4320.2022.01.033
  科研与开发 本期目录 | 过刊浏览 | 高级检索 |
Pd/UiO-66催化一锅法合成2-丁基环己酮的研究
薛伟洋1,2, 吴慧玲1,2, 顾彬1, 刘梦洋1,2, 李敬美1, 孙承林1
1. 中国科学院大连化学物理研究所, 辽宁 大连 116023;
2. 中国科学院大学, 北京 100049
Pd/UiO-66 catalyst for one-pot synthesis of 2-butylcyclohexanone
XUE Wei-yang1,2, WU Hui-ling1,2, GU Bin1, LIU Meng-yang1,2, LI Jing-mei1, SUN Cheng-lin1
1. Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China;
2. University of Chinese Academy of Sciences, Beijing 100049, China
下载:  PDF (4377KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 制备了双功能Pd/UiO-66催化剂,利用粉末X射线衍射、扫描氦离子显微镜、氮气物理吸脱附以及透射电子显微镜对其进行表征。该催化剂在正丁醛-环己酮一锅法制备2-丁基环己酮反应体系中表现出良好的正丁醛转化率(100%)和2-丁基环己酮选择性(62.6%)。考察了反应温度、Pd负载量、催化剂投加量以及酮醛投料质量比对反应结果的影响,并对催化剂进行循环评价。结果表明,在循环过程中催化剂表现出良好的循环稳定性,反应活性和产物选择性没有下降,且催化剂结构未发生变化。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
薛伟洋
吴慧玲
顾彬
刘梦洋
李敬美
孙承林
关键词:  羟醛缩合  加氢  Pd/UiO-66  一锅法合成  2-丁基环己酮    
Abstract: Bifunctional Pd/UiO-66 catalyst is prepared and characterized by means of powder X-ray diffraction,scanning helium ion microscope,N2 physical adsorption,and transmission electron microscope.As the catalyst is employed in preparation of 2-butylcyclohexanone from N-butyraldehyde and cyclohexanone through one-pot method,the conversion of n-butanal can reach 100% and the selectivity of 2-butylcyclohexanone can achieve 62.6%.The effects of reaction temperature,Pd loading amount,catalyst dosage and ketone/aldehyde feeding ratio on the reaction are investigated.During the cycling test,the catalyst shows good stability with little weak of activity and product selectivity.After 3 cycles of reuse,the structure of catalyst remains unchanged.
Key words:  aldol condensation    hydrogenation    Pd/UiO-66    one-pot synthesis    2-butylcyclohexanone
收稿日期:  2021-02-02      修回日期:  2021-11-16           出版日期:  2022-01-20
ZTFLH:  O643  
基金资助: 国家自然科学基金青年科学基金项目(21802135)
通讯作者:  孙承林(1963-),男,硕士,研究员,研究方向为工业废水处理及工业催化,通讯联系人,clsun@dicp.ac.cn。    E-mail:  clsun@dicp.ac.cn
作者简介:  薛伟洋(1996-),男,硕士研究生,研究方向为精细化学品的绿色合成,xueweiyang2020@gmail.com
引用本文:    
薛伟洋, 吴慧玲, 顾彬, 刘梦洋, 李敬美, 孙承林. Pd/UiO-66催化一锅法合成2-丁基环己酮的研究[J]. 现代化工, 2022, 42(1): 162-166.
XUE Wei-yang, WU Hui-ling, GU Bin, LIU Meng-yang, LI Jing-mei, SUN Cheng-lin. Pd/UiO-66 catalyst for one-pot synthesis of 2-butylcyclohexanone. Modern Chemical Industry, 2022, 42(1): 162-166.
链接本文:  
https://www.xdhg.com.cn/CN/10.16606/j.cnki.issn0253-4320.2022.01.033  或          https://www.xdhg.com.cn/CN/Y2022/V42/I1/162
[1] 邓智先,胡延雷,季棚,等.食用香料5(6)-癸烯酸的研究进展[J].化工中间体,2009,5(9):7-8.
[2] Mino T,Masuda S,Nishio M,et al.Synthesis of lactones by baeyer-villiger oxidation with magnesium monoperphthalate hexahydrate[J].The Journal of Organic Chemistry,1997,62(8):2633-2635.
[3] 刘树文.丁位烷基内酯及其合成方法的探讨[J].香料与香精,1982,(4):9-14.
[4] 朱昌朋.5(6)-癸烯酸的合成[P].CN1266841A,2000-09-20.
[5] Zou D,Liu D.Understanding the modifications and applications of highly stable porous frameworks via UiO-66[J].Materials Today Chemistry,2019,12:139-165.
[6] Bi F,Zhang X,Chen J,et al.Excellent catalytic activity and water resistance of UiO-66-supported highly dispersed Pd nanoparticles for toluene catalytic oxidation[J].Applied Catalysis B:Environmental,2020,269:118767.
[7] Chen D,Yang W,Jiao L,et al.Boosting catalysis of Pd nanoparticles in MOFs by pore wall engineering:The roles of electron transfer and adsorption energy[J].Adv Mater,2020,32(30):e2000041.
[8] Chang Z,Li F,Qi X,et al.Selective and efficient adsorption of Au(Ⅲ) in aqueous solution by Zr-based metal-organic frameworks (MOFs):An unconventional way for gold recycling[J].J Hazard Mater,2020,391:122175.
[9] 张雯,鲁金明,刘毅,等.混合配体合成金属有机骨架UiO-66吸附剂的研究[J].现代化工,2019,39(10):101-105.
[10] Vikrant K,Deng Y X,Kim K H,et al.Application of Zr-cluster-based MOFs for the adsorptive removal of aliphatic aldehydes (C1 to C5) from an industrial solvent[J].ACS Appl Mater Interfaces,2019,11(47):44270-44281.
[11] 韩易潼,刘民,李克艳,等.高稳定性金属有机骨架UiO-66的合成与应用[J].应用化学,2016,33(04):367-78.
[12] Dhakshinamoorthy A,Santiago-portillo A,Asiri A M,et al.Engineering UiO-66 metal organic framework for heterogeneous catalysis[J].ChemCatChem,2019,11(3):899-923.
[13] Jiang D,Fang G,Tong Y,et al.Multifunctional Pd@UiO-66 catalysts for continuous catalytic upgrading of ethanol to n-butanol[J].ACS Catalysis,2018,8(12):11973-11978.
[14] Bakuru V R,Davis D,Kalidindi S B.Cooperative catalysis at the metal-MOF interface:Hydrodeoxygenation of vanillin over Pd nanoparticles covered with a UiO-66(Hf) MOF[J].Dalton Trans,2019,48(24):8573-8577.
[15] Vermoortele F,Ameloot R,Vimont A,et al.An amino-modified Zr-terephthalate metal-organic framework as an acid-base catalyst for cross-aldol condensation[J].Chemical Communications,2011,47(5):1521-1523.
[16] Hajek J,Vandichel M,Van De Voorde B,et al.Mechanistic studies of aldol condensations in UiO-66 and UiO-66-NH2 metal organic frameworks[J].Journal of Catalysis,2015,331:1-12.
[17] 张艳梅,戴田霖,张帆,等.核壳结构Fe3O4@UiO-66-NH2磁性纳米复合材料的合成及其催化Knoevenagel缩合反应性能(英文)[J].催化学报,2016,37(12):2106-2113.
[18] Li X,Guo Z,Xiao C,et al.Tandem catalysis by palladium nanoclusters encapsulated in metal-organic frameworks[J].ACS Catalysis,2014,4(10):3490-3497.
[19] Herbst A,Janiak C.MOF catalysts in biomass upgrading towards value-added fine chemicals[J].CrystEngComm,2017,19(29):4092-4117.
[20] Cavka J H,Jakobsen S,Olsbye U,et al.A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability[J].Journal of the American Chemical Society,2008,130(42):13850-13851.
[21] Ren J,Langmi H W,North B C,et al.Modulated synthesis of zirconium-metal organic framework (Zr-MOF) for hydrogen storage applications[J].International Journal of Hydrogen Energy,2014,39(2):890-895.
[22] Sun R,Liu B,Li B G,et al.Palladium(II)@Zirconium-Based mixed-linker metal-organic frameworks as highly efficient and recyclable catalysts for suzuki and heck cross-coupling reactions[J].ChemCatChem,2016,8(20):3261-3271.
[23] Schaate A,Roy P,Godt A,et al.Modulated synthesis of Zr-based metal-organic frameworks:From nano to single crystals[J].Chemistry,2011,17(24):6643-6651.
[24] Gallezot P,Richard D.Selective hydrogenation of α,β-unsaturated aldehydes[J].Catalysis Reviews,1998,40(1-2):81-126.
[1] 孟照鑫, 何青, 胡华为, 沈轶. 我国氢能产业发展现状与思考[J]. 现代化工, 2022, 42(1): 1-6,12.
[2] 王江涛. 多种形式加氢合建站建设优化与技术研究[J]. 现代化工, 2022, 42(1): 7-12.
[3] 刘雯欣, 李丹, 王平, 张朋, 张伟, 鲁墨弘, 李明时, 朱劼. 氮掺杂介孔碳纳米球负载铂催化剂在肉桂醛选择性加氢中的催化性能研究[J]. 现代化工, 2022, 42(1): 178-183.
[4] 孙建怀. 分子筛型加氢裂化催化剂不注氨预硫化新技术应用[J]. 现代化工, 2022, 42(1): 226-229.
[5] 马好文, 杨春亮, 马萍, 陈明林, 冯辉霞, 展学成, 谢元. 丁二烯选择性加氢催化剂研究进展[J]. 现代化工, 2021, 41(S1): 95-99.
[6] 郑港西, 苏灿, 佟向尧. 加氢裂化装置反应器压差增加的原因分析及措施[J]. 现代化工, 2021, 41(S1): 333-335.
[7] 张诚, 赵进成, 王涛, 盛钰菡, 温广明. PHF-131催化剂的首次工业应用[J]. 现代化工, 2021, 41(S1): 336-339.
[8] 文斌, 高海波, 李银平, 唐绍泉, 王东辉. GARDES-Ⅱ器外完全硫化态催化剂在汽油加氢装置的工业应用[J]. 现代化工, 2021, 41(9): 211-214.
[9] 杨天华, 程秋香, 苏涛, 刘树伟, 韩磊, 刘亚青. γ-Al2O3性质对费托蜡加氢裂化反应性能的影响[J]. 现代化工, 2021, 41(8): 101-105.
[10] 刘慧敏, 王美慧, 于戈文, 王亚雄, 丁健. 焙烧温度对CuO/ZrO2催化剂催化草酸酯加氢性能的影响[J]. 现代化工, 2021, 41(8): 106-110.
[11] 赵超越, 赵广, 韦彦明, 刘帆, 冯剑. 草酸二甲酯侧线加氢催化剂研究[J]. 现代化工, 2021, 41(8): 221-223.
[12] 李凤铉, 王刚, 吴显军, 刘彦峰, 李建昌. VAH醛加氢催化剂在异丙醇装置上的工业应用[J]. 现代化工, 2021, 41(8): 236-238.
[13] 张轩, 樊昕晔, 王凯. 传统油企氢能业务发展全产业链探讨[J]. 现代化工, 2021, 41(7): 9-13.
[14] 张旭. 油氢合建加氢站建设与设计规范探讨[J]. 现代化工, 2021, 41(7): 19-25.
[15] 唐瑞源, 吴康, 刘凯, 曹鹏程, 袁悦. 多环芳烃催化加氢催化剂与反应机理研究进展[J]. 现代化工, 2021, 41(7): 61-67.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备09035943号-37
版权所有 © 《现代化工》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn