Please wait a minute...
 
最新公告: 重要提醒:骗子冒充编辑部要求加作者微信,谨防上当!   关于暑假、寒假期间版面费发票及期刊样刊延迟邮寄的通知    
现代化工  2022, Vol. 42 Issue (1): 76-79,84    DOI: 10.16606/j.cnki.issn0253-4320.2022.01.016
  技术进展 本期目录 | 过刊浏览 | 高级检索 |
含钴催化剂电化学析氢研究进展
卫郝, 酒红芳, 徐倩文, 王聪丽, 陈星星
中北大学理学院, 山西 太原 030051
Research progress in electrochemical hydrogen evolution over cobalt-containing catalysts
WEI Hao, JIU Hong-fang, XU Qian-wen, WANG Cong-li, CHEN Xing-xing
School of Science, North University of China, Taiyuan 030051, China
下载:  PDF (1322KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 综述了近几年含钴材料(含钴磷化物、含钴硫化物、含钴氧化物、含钴氮化物)的制备方法及其作为电催化析氢催化剂的研究进展,对含钴材料作为电催化析氢催化剂的发展方向进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
卫郝
酒红芳
徐倩文
王聪丽
陈星星
关键词:    电化学析氢  催化  制备  研究进展    
Abstract: The preparation methods for cobalt-containing materials (cobalt-containing phosphides,cobalt-containing sulfides,cobalt-containing oxides,and cobalt-containing nitrides) in recent years are reviewed,and latest research progress in using these materials as electrocatalytic hydrogen evolution catalysts is summarized.Development direction of cobalt-containing materials as electrocatalytic hydrogen evolution catalysts is prospected.
Key words:  cobalt    electrochemical hydrogen evolution    catalysis    preparation    research progress
收稿日期:  2021-08-23      修回日期:  2021-11-07           出版日期:  2022-01-20
ZTFLH:  O6  
通讯作者:  酒红芳(1975-),女,博士,教授,研究方向为电化学及纳米材料,通讯联系人,hongfangjiu@163.com。    E-mail:  hongfangjiu@163.com
作者简介:  卫郝(1997-),女,硕士生
引用本文:    
卫郝, 酒红芳, 徐倩文, 王聪丽, 陈星星. 含钴催化剂电化学析氢研究进展[J]. 现代化工, 2022, 42(1): 76-79,84.
WEI Hao, JIU Hong-fang, XU Qian-wen, WANG Cong-li, CHEN Xing-xing. Research progress in electrochemical hydrogen evolution over cobalt-containing catalysts. Modern Chemical Industry, 2022, 42(1): 76-79,84.
链接本文:  
https://www.xdhg.com.cn/CN/10.16606/j.cnki.issn0253-4320.2022.01.016  或          https://www.xdhg.com.cn/CN/Y2022/V42/I1/76
[1] Chen W F,Muckerman J T,Fujita E.Recent developments in transition metal carbides and nitrides as hydrogen evolution electrocatalysts[J].Chemical Communications,2013,49(79):8896-8909.
[2] Chen G,Li H,Zhou Y,et al.CoS2 needle arrays induced a local pseudo-acidic environment for alkaline hydrogen evolution[J].Nanoscale,2021,13(32):13604-13609.
[3] Tee S Y,Win K Y,Teo W S,et al.Recent progress in energy-driven water splitting[J].Advanced Science,2017,4(5):1600337-1600361.
[4] Wang L,Zhou Q,Pu Z,et al.Surface reconstruction engineering of cobalt phosphides by Ru inducement to form hollow Ru-RuPx-CoxP pre-electrocatalysts with accelerated oxygen evolution reaction[J].Nano Energy,2018,7(53):270-276.
[5] Wu J,Zhao R,Xiang H,et al.Exposing highly active (100) facet on a SnS2/SnO2 electrocatalyst to boost efficient hydrogen evolution[J].Applied Catalysis B-Environmental,2021,292:120200.
[6] Wu Y,Li G D,Liu Y,et al.Overall water splitting catalyzed efficiently by an ultrathin nanosheet-built,Hollow Ni3S2-based electrocatalyst[J].Advanced Functional Materials,2016,26(27):4839-4847.
[7] Su D,Zhang X,Wu A,et al.CoO-Mo2N hollow heterostructure for high-efficiency electrocatalytic hydrogen evolution reaction[J].Npg Asia Materials,2019,11(78):1-12.
[8] Kordek K,Lorenc-Grabowska E,Rutkowski P.Tailoring the composition of a one-step electrodeposited Co,Ni/Co,Ni(OH)2 composite coating for a highly active hydrogen evolution electrode[J].Sustainable Energy & Fuels,2020,4(1):369-379.
[9] Yang Z,Bai X,Qi C.Synthesis of E-NiCo-LDH for enhanced nonenzymatic detection of hydrogen peroxide[J].Journal of the Electrochemical Society,2020,167(11):117501.
[10] Yan S,Wang K,Zhou F,et al.Ultrafine Co:FeS2/CoS2 heterostructure nanowires for highly efficient hydrogen evolution reaction[J].ACS Applied Energy Materials,2020,3(1):514-520.
[11] Kordek K,Yin H,Rutkowski P,et al.Cobalt-based composite films on electrochemically activated carbon cloth as high performance overall water splitting electrodes[J].International Journal of Hydrogen Energy,2019,44(1):23-33.
[12] Pei Y,Zhang H,Han L,et al.Ultra-porous Co foam supported FeCoP electrode for high efficiency hydrogen evolution reaction[J].Nanotechnology,2021,32(2):024001.
[13] Jiang J,Tang Y,Dong L,et al.Plasma-reduced Co(OH)2 with activated hydrogen evolution and overall water splitting performance[J].Sustainable Energy & Fuels,2020,4(6):2645-2649.
[14] Hu E,Feng Y,Nai J,et al.Construction of hierarchical Ni-Co-P hollow nanobricks with oriented nanosheets for efficient overall water splitting[J].Energy & Environmental Science,2018,11(4):872-880.
[15] Qiu B,Han A,Jiang D,et al.Cobalt phosphide nanowire arrays on conductive substrate as an efficient bifunctional catalyst for overall water splitting[J].ACS Sustainable Chemistry & Engineering,2019,7(2):2360-2369.
[16] Bai N,Li Q,Mao D,et al.One-step electrodeposition of Co/CoP film on Ni foam for efficient hydrogen evolution in alkaline solution[J].ACS Applied Materials & Interfaces,2016,8(43):29400-29407.
[17] Kim H,Oh S,Cho E,et al.3D Porous cobalt-iron-phosphorus bifunctional electrocatalyst for the oxygen and hydrogen evolution reactions[J].ACS Sustainable Chemistry & Engineering,2018,6(5):6305-6311.
[18] Thenuwara A C,Dheer L,Attanayake N H,et al.Co-Mo-P Based electrocatalyst for superior reactivity in the alkaline hydrogen evolution reaction[J].Chemcatchem,2018,10(21):4846-4851.
[19] Zhang X,Gu W,Wang E.Wire-on-flake heterostructured ternary Co0.5Ni0.5P/CC:An efficient hydrogen evolution electrocatalyst[J].Journal of Materials Chemistry A,2017,5(3):982-987.
[20] Ullah N,Xie M,Chen L,et al.Novel 3D graphene ornamented with CoO nanoparticles as an efficient bifunctional electrocatalyst for oxygen and hydrogen evolution reactions[J].Materials Chemistry and Physics,2021,261:124237.
[21] Jin H,Wang J,Su D,et al.In situ cobalt-cobalt oxide/N-doped carbon hybrids as superior bifunctional electrocatalysts for hydrogen and oxygen evolution[J].Journal of the American Chemical Society,2015,137(7):2688-2694.
[22] Guan Y,Xuan H,Li H,et al.Facile synthesis of double-layered CoNiO2/CoO nanowire arrays as multifunction electrodes for hydrogen electrocatalysis and supercapacitors[J].Electrochimica Acta,2020,342:136093.
[23] Liu W,Zhou Y,Bao J,et al.Co-CoO/ZnFe2O4 encapsulated in carbon nanowires derived from MOFs as electrocatalysts for hydrogen evolution[J].Journal of Colloid and Interface Science,2020,561:620-628.
[24] Pang L,Barras A,Zhang Y,et al.CoO promoted the catalytic activity of nitrogen-doped MoS2 supported on carbon fibers for overall water splitting[J].ACS Applied Materials & Interfaces,2019,11(35):31889-31898.
[25] Chen Z,Song Y,Cai J,et al.Tailoring the d-band centers enables Co4N nanosheets to be highly active for hydrogen evolution catalysis[J].Angewandte Chemie-International Edition,2018,57(18):5076-5080.
[26] Cao B,Hu M,Cheng Y,et al.Tailoring the d-band center of N-doped carbon nanotube arrays with Co4N nanoparticles and single-atom Co for a superior hydrogen evolution reaction[J].Npg Asia Materials,2021,13(1):1-14.
[27] Yang L,Lv Y,Cao D.Co,N-codoped nanotube/graphene 1D/2D heterostructure for efficient oxygen reduction and hydrogen evolution reactions[J].Journal of Materials Chemistry A,2018,6(9):3926-3932.
[28] Wang S,Zhang L,Qin Y,et al.Co,N-codoped graphene as efficient electrocatalyst for hydrogen evolution reaction:Insight into the active centre[J].Journal of Power Sources,2017,363:260-268.
[29] You B,Jiang N,Sun Y.Morphology-activity correlation in hydrogen evolution catalyzed by cobalt sulfides[J].Inorganic Chemistry Frontiers,2016,3(2):279-285.
[30] Zhang L,Liang Q,Huang Y,et al.Microspheric flower-like Co4S3@Co foam synthesized by in situ sulfidization for electrocatalytic hydrogen evolution reaction[J].Journal of Materials Science-Materials in Electronics,2018,29(22):19336-19343.
[1] 徐世玉, 邰菊香, 刘学宁, 付俊杰, 袁美玉, 王子寒, 崔升. 隔热用聚酰亚胺气凝胶研究进展[J]. 现代化工, 2022, 42(1): 71-75.
[2] 张亚杰, 陆金仁, 包木太, 李一鸣. ZFO/TNAs复合材料的制备及其光催化性能研究[J]. 现代化工, 2022, 42(1): 90-94.
[3] 李潇祎, 刘芬, 何忠, 汪远, 胡将军. 微波诱导SiC改性Co-Ce/Al2O3催化剂催化氧化甲苯性能的研究[J]. 现代化工, 2022, 42(1): 116-120.
[4] 陈莉, 黄丹, 吴意囡, 单海林. 介孔-大孔HPW/TiO2催化剂的制备及其催化氧化脱硫性能的研究[J]. 现代化工, 2022, 42(1): 132-135,139.
[5] 谢锦印, 田甜, 张丹. Si-TiO2负载V2O5催化甲醇一步氧化法制二甲氧基甲烷的研究[J]. 现代化工, 2022, 42(1): 136-139.
[6] 陈晓雯, 罗驹华, 江陈烨, 孙彩红. NiCo2O4/BPC复合材料的制备及吸波性能研究[J]. 现代化工, 2022, 42(1): 140-144.
[7] 陈彦广, 关金双, 邓冀童, 韩洪晶, 王海英, 张梅. 水热合成纳微尺度Co3O4及其催化解聚木质素磺酸钙性能研究[J]. 现代化工, 2022, 42(1): 145-150,156.
[8] 张琳琳, 胡永杰, 白国栋, 江坤, 刘运权, 杜傲宇, 王夺, 叶跃元. 生物质碳基非贵金属ORR催化剂的制备及其性能研究[J]. 现代化工, 2022, 42(1): 151-156.
[9] 刘雯欣, 李丹, 王平, 张朋, 张伟, 鲁墨弘, 李明时, 朱劼. 氮掺杂介孔碳纳米球负载铂催化剂在肉桂醛选择性加氢中的催化性能研究[J]. 现代化工, 2022, 42(1): 178-183.
[10] 孙建怀. 分子筛型加氢裂化催化剂不注氨预硫化新技术应用[J]. 现代化工, 2022, 42(1): 226-229.
[11] 陈敏生, 刘杰, 朱涛. 车载甲醇水蒸气重整制氢技术研究进展[J]. 现代化工, 2021, 41(S1): 36-41.
[12] 张涛, 陈晓利, 孙超, 袁冬冬. 废钒钛系SCR催化剂有价金属回收与再利用研究进展[J]. 现代化工, 2021, 41(S1): 67-72,77.
[13] 李澜鹏, 程瑾, 曹长海, 王宜迪. 山梨醇催化脱水制备异山梨醇研究进展[J]. 现代化工, 2021, 41(S1): 78-82.
[14] 马好文, 杨春亮, 马萍, 陈明林, 冯辉霞, 展学成, 谢元. 丁二烯选择性加氢催化剂研究进展[J]. 现代化工, 2021, 41(S1): 95-99.
[15] 史海, 梁兵连, 李斌, 赵许群, 侯宝林, 张旭. 多相催化在催化还原六价铀制备四价铀中的应用研究[J]. 现代化工, 2021, 41(S1): 100-104.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备09035943号-37
版权所有 © 《现代化工》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn