Please wait a minute...
 
最新公告: 重要提醒:骗子冒充编辑部要求加作者微信,谨防上当!   关于暑假、寒假期间版面费发票及期刊样刊延迟邮寄的通知    
现代化工  2021, Vol. 41 Issue (12): 175-179    DOI: 10.16606/j.cnki.issn0253-4320.2021.12.035
  科研与开发 本期目录 | 过刊浏览 | 高级检索 |
响应面法优化三醋酸纤维素合成工艺的研究
袁璐璇, 康菡子, 王彦博, 蒋文伟
四川大学化学工程学院, 四川 成都 610207
Optimization on synthesis of cellulose triacetate by using response surface methodology
YUAN Lu-xuan, KANG Han-zi, WANG Yan-bo, JIANG Wen-wei
School of Chemical Engineering, Sichuan University, Chengdu 610207, China
下载:  PDF (2775KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 以瓦楞纸箱为原料成功地合成了三醋酸纤维素(CTA),并利用响应面分析法对合成工艺进行优化。将处理后的纸箱纤维为原料,以乙酸酐为乙酰基供体、乙酸为溶剂、硫酸为催化剂,通过均相乙酰化反应合成了CTA。探究了乙酸、乙酸酐和催化剂的浓度以及反应时间对三醋酸纤维素收率的影响,并结合响应面分析法得到最佳反应条件:硫酸与纤维素的质量比为0.21:1、乙酸酐与纤维素质量比为5.5:1、乙酸与纤维素质量比为20:1、反应时间为6.2 h、反应温度为60℃。最佳反应条件下制得的CTA取代度为2.94,收率为81.03%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
袁璐璇
康菡子
王彦博
蒋文伟
关键词:  三醋酸纤维素  瓦楞纸箱  合成  响应面法    
Abstract: Cellulose triacetate (CTA) is successfully synthesized from spent corrugated cardboard boxes to realize the recycling.The synthesis process is optimized by response surface analysis.CTA is synthesized via homogeneous acetylation reaction by using the treated box fibers as feedstocks, with acetic anhydride as acetyl donor, acetic acid as solvent and sulfuric acid as catalyst.The impacts of the concentrations of acetic acid, acetic anhydride and catalyst, and reaction time on the yield of cellulose triacetate are explored.Combining with response surface analysis, the optimum reaction conditions are obtained that the mass ratio of sulfuric acid to cellulose is 0.21:1, the mass ratio of acetic anhydride to cellulose is 5.5:1, the mass ratio of acetic acid to cellulose is 20:1, the reaction lasts for 6.2 h, and the reaction temperature is at 60℃.CTA substitution degree reaches 2.94 and the yield of CTA reaches 81.03% under the optimal conditions.
Key words:  cellulose triacetate    corrugated box    synthesis    response surface methodology
收稿日期:  2021-01-05      修回日期:  2021-10-13           出版日期:  2021-12-20
ZTFLH:  O633.14  
通讯作者:  蒋文伟(1968-),男,博士,教授,研究方向为精细有机合成,通讯联系人,jiangwenwei@scu.edu.cn。    E-mail:  jiangwenwei@scu.edu.cn
作者简介:  袁璐璇(1995-),女,硕士研究生,研究方向为精细有机合成,843144685@qq.com
引用本文:    
袁璐璇, 康菡子, 王彦博, 蒋文伟. 响应面法优化三醋酸纤维素合成工艺的研究[J]. 现代化工, 2021, 41(12): 175-179.
YUAN Lu-xuan, KANG Han-zi, WANG Yan-bo, JIANG Wen-wei. Optimization on synthesis of cellulose triacetate by using response surface methodology. Modern Chemical Industry, 2021, 41(12): 175-179.
链接本文:  
https://www.xdhg.com.cn/CN/10.16606/j.cnki.issn0253-4320.2021.12.035  或          https://www.xdhg.com.cn/CN/Y2021/V41/I12/175
[1] Biswas A,Selling G,Appell M,et al.Iodine catalyzed esterification of cellulose using reduced levels of solvent[J].Carbohydrate Polymers,2007,68(3):555-560.
[2] Ribeiro S D,Meneguin A B,Prezotti F G,et al.Cellulose triacetate films obtained from sugarcane bagasse:Evaluation as coating and mucoadhesive material for drug delivery systems[J].Carbohydrate Polymers Scientific & Technological Aspects of Industrially Important Polysaccharides,2016,152:764-774.
[3] El Nemr A,Ragab S,El Sikaily A.Rapid synthesis of cellulose triacetate from cotton cellulose and its effect on specific surface area and particle size distribution[J].Iranian Polymer Journal,2017,26(4):261-272.
[4] Lan T,Shao Z Q,Wang J Q,et al.Fabrication of hydroxyapatite nanoparticles decorated cellulose triacetate nanofibers for protein adsorption by coaxial electrospinning[J].Chemical Engineering Journal,2015,260:818-825.
[5] Im S J,Jeong G,Jeong S,et al.Fouling and transport of organic matter in cellulose triacetate forward-osmosis membrane for wastewater reuse and seawater desalination[J].Chemical Engineering Journal,2020,384:123341.
[6] Prihatiningtyas I,Gebreslase G A,Van der Bruggen B.Incorporation of Al2O3 into cellulose triacetate membranes to enhance the performance of pervaporation for desalination of hypersaline solutions[J].Desalination,2020,474:114198.
[7] Chen K,Xiao C,Liu H,et al.Design of robust twisted fiber bundle-reinforced cellulose triacetate hollow fiber reverse osmosis membrane with thin separation layer for seawater desalination[J].Journal of Membrane Science,2019,578:1-9.
[8] Zhang B,Song X,Nghiem L D,et al.Osmotic membrane bioreactors for wastewater reuse:Performance comparison between cellulose triacetate and polyamide thin film composite membranes[J].Journal of Membrane Science,2017,539:383-391.
[9] Nguyen T P N,Yun E T,Kim I C,et al.Preparation of cellulose triacetate/cellulose acetate (CTA/CA)-based membranes for forward osmosis[J].Journal of Membrane Science,2013,433:49-59.
[10] Gu Y,Wang Y N,Wei J,et al.Organic fouling of thin-film composite polyamide and cellulose triacetate forward osmosis membranes by oppositely charged macromolecules[J].Water Research,2013,47(5):1867-1874.
[11] Khaldia S,Lamia B,Yasmina K,et al.Preparation,characterization and antioxidant activity of microspheres made of cellulose triacetate (CTA) to control the release of vitamin C[J].Journal of Chemical Technology & Biotechnology,2020,95(6):1800-1807.
[12] Fan X,Liu Z T,Liu Z W.Preparation and application of cellulose triacetate microspheres[J].Journal of Hazardous Materials,2010,177(1-3):452-457.
[13] Kajjari P B,Manjeshwar L S,Aminabhavi T M.Novel blend microspheres of cellulose triacetate and bee wax for the controlled release of nateglinide[J].Journal of Industrial and Engineering Chemistry,2014,20(2):397-404.
[14] Han S O,Son W K,Youk J H,et al.Ultrafine porous fibers electrospun from cellulose triacetate[J].Materials Letters,2005,59(24-25):2998-3001.
[15] Sassi J F,Chanzy H.Ultrastructural aspects of the acetylation of cellulose[J].Cellulose,1995,2(2):111-27.
[16] Tang L G,Hon D N S,Zhu Y Q.An investigation in solution acetylation of cellulose by microscopic techniques[J].Journal of Applied Polymer Science,1997,64(10):1953-1960.
[17] Viera R G P,Rodrigues Filho G,de Assunção R M N,et al.Synthesis and characterization of methylcellulose from sugar cane bagasse cellulose[J].Carbohydrate Polymers,2007,67(2):182-189.
[18] Hindi S S Z,Abohassan R A.Cellulose triacetate synthesis from cellulosic wastes by heterogeneous reactions[J].BioResources,2015,10(3):5030-5048.
[19] Nabili A,Fattoum A,Brochier-Salon M C,et al.Synthesis of cellulose triacetate-I from microfibrillated date seeds cellulose (Phoenix dactylifera L.)[J].Iranian Polymer Journal,2017,26(2):137-147.
[20] Huang K,Zhang M,Zhang G,et al.Acetylation modification of rice straw fiber and its thermal properties[J].Cellulose Chemistry and Technology,2014,48(3-4):199-207.
[1] 杨彪, 母其海, 朱娜, 邓卓, 刘志邦. 响应面法和一维卷积神经网络优化微波碳热还原低品位钛精矿工艺的研究[J]. 现代化工, 2021, 41(S1): 134-138.
[2] 郝梦亚, 朱薇, 马姝雅, 张晶, 端允. 超声辅助锆柱撑膨润土吸附刚果红的研究[J]. 现代化工, 2021, 41(S1): 163-168.
[3] 张宇, 毛磊, 张春桃, 梁文懂. 原位合成Cu-Fe3O4@花生壳炭及其非均相Fenton催化降解罗丹明B的研究[J]. 现代化工, 2021, 41(9): 86-91.
[4] 孙兆颖, 周志辉, 吴红丹. CHA型分子筛膜的合成方法及发展前景[J]. 现代化工, 2021, 41(8): 47-51,57.
[5] 康菡子, 袁璐璇, 王彦博, 蒋文伟. 响应面法优化废旧PET一锅法解聚工艺的研究[J]. 现代化工, 2021, 41(8): 177-181.
[6] 朱明, 梅华. 3 MPa分段式反应吸附耦合的氨合成工艺模拟[J]. 现代化工, 2021, 41(8): 208-213.
[7] 乔祝海, 李向东, 尚军飞. 甲醇合成装置催化剂寿命缩短原因分析及解决措施[J]. 现代化工, 2021, 41(8): 218-220,223.
[8] 陈辉, 刘淑芝, 刘先军. 电催化氮还原合成氨催化剂研究进展[J]. 现代化工, 2021, 41(7): 82-85.
[9] 姜佳伟, 李鑫, 王锦艳, 蹇锡高, 刘娇, 朱清梅, 张小舟. 卤代二氮杂萘二酮微波反应的研究[J]. 现代化工, 2021, 41(6): 177-180.
[10] 姚彬, 张文存, 朱瑞龙. 生物质能源制备合成气的技术探讨及研究现状[J]. 现代化工, 2021, 41(5): 54-58.
[11] 莫永强, 李洪亮, 方书起, 常春, 陈俊英. 城市生活垃圾气化制合成气研究进展[J]. 现代化工, 2021, 41(5): 73-77.
[12] 赵文祥, 杨双霞, 陈雷, 孙来芝, 谢新苹, 伊晓路, 司洪宇, 于萌萌, 华栋梁. 生物质热化学催化转化制富氢合成气研究进展[J]. 现代化工, 2021, 41(4): 38-42.
[13] 张甄, 秦绍东, 何若南, 李加波, 邢爱华. 合成气直接制备低碳烯烃催化剂研究进展[J]. 现代化工, 2021, 41(4): 58-62.
[14] 王鹤臻, 张晶, 王娟, 王博磊, 李夺, 潘立卫. 甲烷自热重整催化剂的研究进展[J]. 现代化工, 2021, 41(3): 53-56,62.
[15] 陈建, 欧阳金波, 刘峙嵘, 周利民, 黄海清, 应昕. 牛磺酸的合成工艺及结晶纯化研究进展[J]. 现代化工, 2021, 41(3): 57-62.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备09035943号-37
版权所有 © 《现代化工》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn